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Abstract 

Using the impact of the Soviet Union’s collapse on the performance of theoretical 

mathematicians as a natural experiment, we attempt to resolve the controversy in prior research 

on whether specialists or generalists have superior creative performance. While many have 

highlighted generalists’ advantage due to access to a wider set of knowledge components, others 

have underlined the benefits that specialists can derive from their deep expertise. We argue that 

this disagreement might be partly driven by the fact that the pace of change in a knowledge 

domain shapes the relative return from being a specialist or a generalist. We show that generalist 

scientists performed best when the pace of change was slower and their ability to draw from 

diverse knowledge domains was an advantage in the field, but specialists gained advantage when 

the pace of change increased and their deeper expertise allowed them to use new knowledge 

created at the knowledge frontier. We discuss and test the roles of cognitive mechanisms and of 

competition for scarce resources. Specifically, we show that specialists became more desirable 

collaborators when the pace of change was faster, but when the pace of change was slower, 

generalists were more sought after as collaborators. Overall, our results highlight important 

trade-offs associated with specialization for creative performance. 

 

Keywords: knowledge specialization and creativity, change and creativity, knowledge frontier, 

Soviet collapse and productivity of mathematicians 
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Since Schumpeter (1942), a vast literature has emphasized the crucial role of scientists and 

inventors as catalysts of economic change. Through their ingenuity, creative workers produce 

new knowledge and technologies that spur social and economic growth (Romer, 1990), boost or 

destroy organizational capabilities (Henderson and Clark, 1990), shake old industries (Barnett, 

1990), or give birth to new ones (Hargadon and Douglas, 2001). The literature points to two 

types of creative workers: specialists and generalists. Specialists have experience and deep 

expertise in a narrowly defined domain of knowledge, while generalists tend to have a large 

amount of experience but spread across multiple related or unrelated knowledge domains. A 

generalist with the same amount of experience spread across multiple domains would, by 

definition, have less expertise in each domain. The distinction is rooted in a strategic trade-off 

that all creative workers face: either invest their limited time entirely within a specific knowledge 

domain and become a specialist in that domain or invest it across several domains—achieving a 

less comprehensive understanding of each—and become a generalist. Past research seems deeply 

divided on which strategy leads to superior creative performance. 

On one hand, a large stream of work has argued that because creativity is about 

producing novel knowledge recombinations, creative workers should seek access to diverse 

knowledge bases. Individuals who adopt this approach—generalists—gain access to a wider 

array of knowledge, technologies, and heuristics that can help them break away from traditional 

thought patterns (Hargadon and Sutton, 1997; Taylor and Greve, 2006; Fleming, Mingo, and 

Chen, 2007). Scholars have shown that breakthrough inventions often involve uncommon 

recombinations of knowledge components from distant domains (Ahuja and Lampert, 2001; 

Fleming, 2001), and others have found a link between access to atypical knowledge sources and 
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the creative performance of artists (Cattani and Ferriani, 2008), managers (Burt, 2004), inventors 

(Reagans and Zuckerman, 2001), and scientists (Schilling and Green, 2011). 

On the other hand, several studies have argued for the benefits of specialization because 

it enables individuals to achieve deeper expertise and a more detailed understanding of the 

knowledge gaps in their domain of specialty. Specialists also benefit from a more extensive 

repertoire of domain-specific problem-solving and memory skills (Dane, 2010). Empirical 

evidence indicates that specialized scientists (Leahey, 2007) and inventors (Conti, Gambardella, 

and Mariani, 2013) are more productive and successful. Other research has shown that deeper 

expertise and local recombinations, as opposed to distant and diverse recombinations, are more 

likely to yield more cognitively novel innovations (Kaplan and Vakili, 2015). Moreover, there is 

some evidence that individuals lacking specialization might spread themselves too thin and be 

perceived as less credible (Weisberg, 1998; Leahey, 2007). 

We propose that the seeming inconsistency between these two streams of work stems, in 

part, from efforts to generalize from different settings with different underlying characteristics. 

The amount of evidence highlighting the superior performance of both specialists and generalists 

suggests that they have strengths and weaknesses that make them better suited to different 

circumstances, yet past studies have typically abstracted away from the specificities of their 

research settings and argued for one view or the other. The respective advantages and 

disadvantages of generalists and specialists suggest that creative people face a trade-off between 

strategies that are best suited to different types of circumstances. One of these is the pace at 

which knowledge components become available in a domain, which can alter the cost–benefit 

balance of being a generalist or a specialist in different directions. Specifically, we hypothesize 

that generalists will experience superior creative performance in slower-paced knowledge 
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domains—access to diverse knowledge enables introducing new knowledge recombinations in 

these domains—whereas specialists generally benefit from faster-evolving ones because their 

depth of expertise allows them to exploit new knowledge components faster and more 

effectively. 

Testing this hypothesis empirically is challenging. While the pace of change in a domain 

may affect the performance of creative workers, their performance also shapes the availability of 

new components and, with it, the pace of change in that domain (Carnabuci and Bruggeman, 

2009). We address this challenge by exploiting a natural experiment—the unexpected 

acceleration of the pace of change in some fields of theoretical mathematics more than in others 

after the collapse of the Soviet Union (hereafter the Soviet collapse) in 1989. The event provides 

a rare opportunity to identify the impact of a change in the pace of knowledge advancement on 

the relative creative performance of specialist and generalist mathematicians. We investigate 

how shifts in the pace of change affected the relative creative performance of specialist and 

generalist mathematicians after the Soviet collapse. In so doing, we aim to reconcile, at least 

partly, existing debates about the relationship between the strategic choice of becoming a 

specialist (or generalist) and creative performance. 

 

The Generalist Versus Specialist Trade-off 

Creative workers are not born at the frontier of their field. As Amabile (1983: 363) noted, “It is 

impossible to be creative in nuclear physics unless one knows something (and probably a great 

deal) about nuclear physics.” While some learning is necessary to contribute to any field, 

creative workers nevertheless have some discretion about how to allocate their effort. They can 

choose to invest it narrowly in a specific knowledge domain or seek a broader if shallower 
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knowledge base. At its core, this choice stems from the underlying tension between an 

individual’s limited time and cognitive abilities and the limitless amount of knowledge that one 

could potentially acquire (Jones, 2009). 

The decision of whether to become a specialist or a generalist is a strategic one.1 Both are 

likely to confer distinct strengths and weaknesses, but bounded rationality and limited time mean 

that one cannot commit to both strategies at the same time. This decision is especially important 

considering the competitive nature of creative work. Because resources, collaborators, and 

attention are scarce, small differences in performance can have long-lasting consequences. For 

example, individuals whose skills are more valued are likely to enjoy easier access to high-

quality collaborators, leading to higher future performance. The opposite is also true. Skills that 

are marginally less valued might prevent the formation of potentially productive collaborations 

and therefore have long-term negative consequences for creative performance (Merton, 1968; 

Latour and Woolgar, 1986; Reschke, Azoulay, and Stuart, 2017). Yet prior studies disagree 

about which creative type is most successful. 

Generalists and Creativity 

A large stream of literature highlights reasons why generalists are more likely to experience 

superior levels of creative performance (Nagle and Teodoridis, 2017). Because creative work is a 

recombination process, individuals who have access to a more varied set of knowledge 

components can experiment with a larger set of recombinations. Ideas and knowledge from one 

domain can sometimes be productively applied to others (Hargadon and Sutton, 1997; Burt, 

2004; Jeppesen and Lakhani, 2010; Ferguson and Carnabuci, 2017). Moreover, access to diverse 

knowledge domains is likely to make creative workers more flexible in their problem-solving 

                                                           
1 Conceptually, generalists and specialists constitute two ends of a continuum. For clarity, our theory considers only 

these two ideal types. 
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approaches, allowing them to use a broader repertoire of perspectives and heuristics in their work 

(Dunbar, 1995). 

Becoming a generalist and developing boundary-spanning skills is not costless, however. 

It is difficult to identify relevant recombinations in general but even more so when searching 

across knowledge domains. Scientific knowledge tends to be complex, often including tacit 

components (Polanyi, 1958; Orlikowski, 2002). In any field, the literature is voluminous, and the 

quality of each contribution is uncertain. Different knowledge communities often use distinct 

approaches to creating, validating, and describing knowledge (Dougherty, 1992; Knorr-Cetina, 

1999). To identify opportunities for recombination across knowledge domains and for 

implementing them, boundedly rational creative workers must therefore invest considerable time, 

effort, and resources not only to familiarize themselves with those different approaches but also 

to build a social network spanning those distinct communities. Those efforts, in addition, often 

lead to dead ends (Fleming, 2001; Leahey, Beckman, and Stanko, 2017). 

Specialists and Creativity 

Specialists lack the knowledge breadth of generalists, but their narrow focus allows them to 

develop a deeper understanding of their domain. Specialists can recall larger amounts of domain-

specific knowledge more effectively. For example, Chase and Simon (1973) showed that chess 

masters can recall the exact position of every piece on a chessboard by observing the board very 

briefly. In addition, specialists have a more sophisticated appreciation of the different attributes 

of each component in their knowledge domain as well as of the relationships between those 

components (Dane, 2010). Chi et al. (1982) showed that expert physicists tend to categorize 

domain-specific physics problems according to physics principles, whereas non-experts 

categorize according to features noted in the problem statement. In turn, categorization based on 
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principles helps experts activate knowledge structures related to each principle, helping problem-

solving activities. 

These benefits notwithstanding, specialization also has important downsides. It might 

lead to situations in which the same set of familiar components is constantly used and reused, 

leading to decreasing returns to creative work (Fleming, 2001). Moreover, psychologists found 

that knowledge specialization leads to the development and reinforcement of thought processes 

that become taken for granted, a phenomenon known as the “Einstellung” effect (or “problem-

solving fixation”) (Luchins, 1942; Frensch and Sternberg, 1989; Bilalić, McLeod, and Gobet, 

2008: 653). The effect was famously documented in Abraham Luchins’ (1942) water-jug 

experiment. In this short study, participants faced a set of five problems—“Einstellung 

Problems”—all of which could be solved in the same manner. Following this, they were given 

another set of problems that could be solved laboriously with this method but for which a much 

simpler method also existed. Of the participants exposed to the full set of Einstellung Problems, 

none found the simpler solution. In contrast, over 60 percent of participants in the control group 

who were warned to be careful after their exposition to the Einstellung problems identified the 

simpler solution. In other words, prior experience led to routinized problem solving which in turn 

blinded participants to the existence of a better solution. This striking demonstration of the 

negative impact of expertise on creativity has since been replicated and extended in a large 

number of studies (see Bilalić, McLeod, and Gobet, 2008; Dane, 2010). 

Specialization in a domain can therefore lead to the formation of habitual behaviors 

rooted in one’s knowledge structure (Aarts, Verplanken, and van Knippenberg, 1998; Aarts and 

Dijksterhuis, 2000; Audia and Goncalo, 2007; Murray and Häubl, 2007; Chai, 2017). While 
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habits can increase efficiency in dealing with the routine tasks required in a domain, they can 

nonetheless slow the pace of adaptation to new tasks and heuristics. 

The Pace of Change as a Moderator of Creative Performance 

Clearly, the decision to become a specialist or a generalist implies different advantages and 

drawbacks. Thus some studies have attempted to reconcile the seemingly inconsistent findings in 

the literature on the superiority of either strategy by highlighting differences in the quantity and 

quality of creative output. The general idea is that the generalists’ access to more diverse 

knowledge components enables them to produce more novel recombinations, but while some of 

these novel recombinations may have great impact, many others will fail. In contrast, specialists 

face fewer barriers to recombination, but they lack access to the same variety of components. 

One might therefore expect them to produce more incremental recombinations (Carnabuci and 

Bruggeman, 2009; Leahey, Beckman, and Stanko, 2017). 

We take a different approach to reconcile the inconsistency in prior research, which for 

the most part has neglected the underlying characteristics of the context within which creative 

workers operate. Previous studies have either explored the average performance of a certain 

creative strategy in an aggregated sample of creative workers across many different domains 

(e.g., Fleming, Mingo, and Chen, 2007) or investigated the performance of creative workers in a 

single domain of knowledge or technology (e.g., Audia and Goncalo, 2007). Despite the usual 

cautionary notes about the generalizability of findings, both categories of research have generally 

overlooked how the variance in characteristics of knowledge domains moderates the 

performance of different creative strategies. Our aim here is to take a step toward addressing this 

gap by focusing on a specific characteristic of a knowledge domain, namely the pace at which 
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new knowledge components become available in the domain, and by showing how it 

differentially affects the creative performance of specialists and generalists. 

We build our argument on three premises. First, innovation is most often a process of 

knowledge recombination (Fleming, 2001). New ideas are essentially combinations of previously 

unconnected knowledge components. Creativity is cumulative, and each new recombination is a 

new component that can be used for future discoveries or inventions (Weitzman, 1998). 

Second, the set of knowledge components in a domain is not fixed. As scientific and 

technological advancements occur in a domain, new knowledge components become available. 

The emergence of new knowledge components thus affects the set of opportunities available to 

creative workers for knowledge recombination. The more knowledge components emerge in a 

domain, the more opportunities emerge for recombinations between the new knowledge 

components themselves, as well as between the new knowledge components and the previously 

established ones. 

Third, the pace of change varies substantially across knowledge domains and over time. 

Periods of intense change often alternate with more stable periods (Kuhn, 1970; Dosi, 1982) in a 

process analogous to the punctuated equilibrium framework developed by evolutionary 

biologists (Gould and Eldredge, 1977). Numerous episodes of sudden acceleration or 

deceleration have been described. Tushman and Anderson (1986) showed that the cement, 

airline, and minicomputer industries experienced periods of rapid technological change followed 

by years of relatively slow improvements. Lim (2009) documented how IBM’s breakthrough 

development of copper interconnects to replace aluminum ones in 1999 moved the knowledge 

frontier in the semiconductor industry considerably and paved the way for the production of 

smaller chips with superior conductivity. The biotechnology industry in its early stages was 
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reportedly shaped and shaken by various scientific discoveries in genetics (Russo, 2003). 

Levinthal (1998) described how the broadcasting industry emerged almost overnight after the 

abrupt realization that there was a demand for this type of technology. In science, Boring (1955) 

noted that the invention of the telescope in 1608 enabled a flurry of astronomical discoveries. 

Kuhn (1970) described how the realization by Joseph Black in 1756 that air was not the only 

gas—and his identification of fixed air (CO2)—opened the door to the rapid discovery of 

numerous other gases by Cavendish, Priestly, and Scheele. More recently, the Human Genome 

Project is credited with the birth of the new field of genomics and a nearly exponential increase 

in the pace of disease gene discovery.2 

These three premises suggest that creative recombinations do not take place only 

“horizontally”—within or across domains—but also “vertically”—using components that are 

more or less distant from the frontier. Moreover, the pace of change in a domain is likely to 

shape the returns on attempting these two types of recombination. A faster pace of change 

facilitates vertical recombination because it ensures that many new components are available at 

the frontier. In contrast, a slower pace of change makes vertical recombination more difficult, 

therefore presumably increasing the relative value of horizontal recombination. While the pace at 

which new knowledge components become available in a domain influences all knowledge 

workers in that domain, we expect the pace to have differential effects on the performance of 

specialists and generalists. In the case of a slow-paced knowledge domain, where the set of 

knowledge components available for recombination is relatively stable, specialists, who largely 

rely on the knowledge available within the domain, gradually exhaust any novel and impactful 

recombinations (Fleming, 2001; Schilling, 2005), a situation that Fleming (2002) called 

                                                           
2 https://www.genome.gov/10001772/all-about-the--human-genome-project-hgp/. 
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“combinatoric exhaustion.” Specialists see the benefits of specialization erode while they 

struggle to adopt fresh perspectives by borrowing ideas from other domains.  Slower-paced 

environments should therefore benefit generalists. Their access to several knowledge domains 

opens the door to a greater variety of potential recombinations, and the relatively slow 

emergence of new knowledge components within the field gives them enough time to avoid 

falling behind their specialist colleagues. 

The situation changes when the pace of change in a field accelerates. Specialists are 

generally better equipped than generalists to take advantage of a faster-evolving knowledge 

frontier. Their narrow focus means that they can invest their time effectively to absorb newly 

emerging knowledge components. They can take advantage of their deeper understanding of the 

field not only to identify knowledge gaps but also to gauge recombination opportunities between 

new components and those previously available. The drawbacks of specialization also become 

less important because the rapid emergence of new components within the field lowers the value 

of borrowing knowledge components from other areas. Given the closer similarity and relevance 

of newly emerged knowledge components to extant knowledge components in a domain, the 

recombinations of the two could be less prone to failure than recombinations of components 

across different knowledge domains. In contrast, generalists in faster-paced environments are 

likely to struggle to maintain their ties to various fields while staying current with the 

advancements of the faster-paced domain. Their reliance on riskier boundary-spanning 

recombinations becomes a liability. With an increase in the pace of change in a domain, 

specialists’ disadvantage relative to generalists should gradually decline and their relative 

advantage gradually increase such that the creative performance of specialists may surpass that 

of generalists in sufficiently fast-paced domains. Therefore we expect: 
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Hypothesis 1 (H1): As the pace of change in a domain accelerates, the creative 

performance of specialists relative to generalists increases. 

 

To this point, we have focused on the distinctive capabilities of specialists and 

generalists. Creative performance, however, is not determined by creative capabilities alone. The 

ease in producing creative recombinations varies over time (Kuhn, 1970; Dosi, 1982). An 

acceleration of the pace of change might offer an abundance of new knowledge components that 

creative workers can productively recombine. It might also attract additional attention and 

resources for the fast-changing field. As a result, an increase in the pace of change can 

potentially provide more recombination opportunities for all creative workers in a domain. 

Hence, even though it advantages specialists more than generalists, one might expect that 

generalists would benefit, too, but it is more likely that generalists’ creative performance will 

decline when the pace of change increases in a domain, for two reasons. 

First, generalists’ skills are not well adapted to take advantage of recombination 

opportunities in a faster-paced domain. They might struggle to identify these opportunities 

because of their more superficial understanding of the domain and their divided efforts to keep 

up to date across multiple domains. Second, even if generalists identify some of the emerging 

opportunities, they are at a disadvantage in attracting the complementary resources needed to act 

on those opportunities relative to specialists. Creative workers frequently stumble upon similar 

ideas, but only those that win the priority race can reap the reward for their investment (Merton, 

1957). In science, for example, a researcher’s success in attracting citations and credit often 

means that their peers and competitors will receive fewer citations and overall less credit 

(Reschke, Azoulay, and Stuart, 2017). Complementary resources such as funding, equipment, 

and collaborators are scarce and will naturally flow to those who are expected to be more 
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successful (Merton, 1968; Latour and Woolgar, 1986). Even if generalists are able to attract the 

complementary resources they need, they might still struggle. Creative insights are only valuable 

to the extent that others learn about them, but attention is scarce. At one extreme, if the work of 

specialists attracts all the limelight, the work of generalists will remain unknown. We therefore 

hypothesize: 

Hypothesis 2 (H2): As the pace of change in a domain accelerates, generalists are likely 

to experience a decline in their creative performance; the reverse will occur for 

specialists. 

 

Methods 

Empirical Setting 

To test these predictions, we focused on the field of theoretical mathematics and the publication 

output of mathematics scientists. We follow a growing literature using scientific publications to 

measure scientists’ creative output (e.g., Jones and Weinberg, 2011; Uzzi et al., 2013; Leahey, 

Beckman, and Stanko, 2017). Moreover, we exploited a natural experiment—the Soviet collapse, 

in 1989—to address the endogeneity issues involved with testing our predictions. For several 

reasons, this event provides a unique opportunity to examine the relative performance of 

specialists versus generalists in knowledge domains with varying paces of change. 

The unexpected, exogenous release of new knowledge in certain areas of theoretical 

mathematics due to the Soviet collapse enabled us to control for the endogenous link between the 

activity of creative workers and the pace of change of knowledge domains. Our empirical 

strategy relies on the assertion that the Soviet collapse caused a sudden and unexpected increase 

in the pace of change in theoretical mathematics and that it did so more for some subfields of 

mathematics than for others (Agrawal, Goldfarb, and Teodoridis, 2016). We based this claim on 

three main observations. First, the Soviet Union was, and Russia continues to be, a world-
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renowned center of scientific research, with mathematics holding a prominent position. Scholarly 

research in theoretical mathematics attracted great minds, as it was uniquely detached from 

politics, conferred status and prestige, and offered financial rewards superior to those of many 

other occupations. Second, although Soviet mathematics was strong across the entire spectrum of 

mathematics, Soviet mathematicians made greater advancements in some subfields than in others 

(Graham, 1993). These differences reflect historical path dependency. Some subfields of 

theoretical mathematics built on strong mentorship from the early 1900s and continued to attract 

bright minds thereafter (Borjas and Doran, 2012). For example, the success of Moscow 

mathematics can be traced back to Ergorov and his student N. N. Luzin (Tikhomirov, 2007), 

whose famous work focused mainly on the theory of functions. Finally, Soviet knowledge in 

theoretical mathematics was kept secret from the outside world because of the Communist 

government’s rules and regulations. The Soviet government strictly controlled international 

travel. Academics seeking to attend foreign conferences had to undergo a stringent and lengthy 

approval process, and many researchers were blacklisted because of their “tainted” backgrounds. 

The few approvals granted were typically for travel in Eastern Europe (Ganguli, 2014). 

Additionally, Soviet researchers were prevented from publishing their findings outside the Soviet 

Union, from communicating or collaborating with non-Soviets, and even from accessing non-

Soviet references. Thus Soviet advancements in mathematics remained relatively unknown to the 

outside world until the Soviet collapse (Graham and Dezhina, 2008), when they were suddenly 

made available.3 

                                                           
3 The following quote, from an article published on May 8, 1990, in the New York Times, indicates the sudden 

outward shift of the knowledge frontier: “Persi Diaconis, a mathematician at Harvard, said: ‘It’s been fantastic. You 

just have a totally fresh set of insights and results.’ Dr. Diaconis said he recently asked Dr. Reshetikhin for help with 

a problem that had stumped him for 20 years. ‘I had asked everyone in America who had any chance of knowing’ 

how to solve a problem of determining how organized sets become disorganized, Dr. Diaconis said. No one could 

help. But Dr. Reshetikhin told Dr. Diaconis that Soviet scientists had done a lot of work on such problems. ‘It was a 

whole new world I had access to,’ Dr. Diaconis said.” 
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Using an extensive dataset of publication and citation data in the field of mathematics, we 

carefully tracked the creative output and performance of mathematicians over a long period 

(1980–2000). The data come from the Mathematical Reviews (MR) division of the American 

Mathematical Society (AMS). The MR Database includes all academic publications in 

mathematics worldwide. 

We observed the specialization levels of mathematicians in our sample based on a 

manual, detailed categorization of research output provided by the MR Database, which 

classifies each paper in mathematics using Mathematics Subject Classification (MSC) codes. The 

MSC schema are internationally recognized and facilitate targeted searches on research subjects 

across all subfields of mathematics. The MR team assigns one primary MSC code to each 

academic publication uploaded to the MR Database. There are 33 codes covering theoretical 

mathematics, as described below. Using the MSC codes assigned to each paper, we can measure 

the degree of specialization of each individual mathematician at a given time. 

The field of theoretical mathematics plays a fundamental role in knowledge and 

technological progress across a wide range of domains. Wavelet and Fourier transforms are 

widely used in electronics, computer graphics, and medical equipment such as MRI machines. 

Algebraic topology is used extensively in data mining and processing. Number theory, 

particularly the theory of prime numbers, has immensely influenced computer and network 

security algorithms. Turing’s theories of computability provided the foundation for the field of 

computing. Many advancements in space technology and exploration would have been 

impossible without foundational geometry theories. Theoretical math has substantially 

influenced many areas in the social sciences such as linguistics, economics, and political science. 

Put simply, theoretical mathematics provides the abstract foundation and structure for 
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formulating and understanding our physical world. Corporations such as Microsoft, Google, and 

IBM employ theoretical mathematicians in various areas of security and computing. Hence the 

field of theoretical mathematics provides valuable insights into one of the fundamental engines 

of economic, technological, and social progress. 

Data 

The MR Database covers the three main branches of mathematics: mathematical foundations 

(including history and biography), pure or theoretical mathematics, and applied mathematics. 

Our focus is on theoretical mathematics, which includes analysis, algebra, and geometry. Our 

sample tracks academic publications of mathematicians over a 21-year period, 1980 to 2000 

inclusive. 

To construct our sample, we first collected data on every academic publication in 

theoretical mathematics published between 1980 and 2000, 10 years before and after the collapse 

of the Soviet Union in 1989. The data on publications include year of publication, MSC 

classification code, full set of authors per academic publication, and number of academic 

citations received from subsequent publications. Next, we rearranged the data at the author-year 

level and counted the number of academic publications and citations per author, per year. We 

excluded all Soviet authors, who were already at the frontier of knowledge, and focused on all 

other mathematicians, who experienced the frontier advancement. We also excluded all 

publications with at least one Soviet author to ensure that our results are not driven by 

preferential direct access to Soviet knowledge. We further restricted our sample to authors with 

at least four publications before the Soviet collapse, namely between 1980 and 1989.4 The choice 

of a minimum of four publications helped us carefully separate specialists from generalists in our 

                                                           
4 The results are robust to choosing cut-off minimums of three, five, and six publications. At cut-offs smaller than 

three publications, we cannot properly distinguish between specialist and novice mathematicians. 
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sample and ensure that our results are not driven by unproductive individuals classified as 

specialists because of their low number of publications. For example, individuals with one 

publication would otherwise be automatically classified as specialists, but their lack of 

diversification would be mechanically driven by their low productivity. We provide details on 

our measure of diversification in the next sections. Finally, using the diversification measure 

described below, we identified all individuals who could be cleanly categorized as either a 

specialist or a generalist and dropped the rest from the sample. In our robustness checks, we 

provide sensitivity analyses on our categorization of specialists and generalists. The final core 

dataset contains data on 6,358 mathematicians and their full record of publications between 1980 

and 2000. 

Last, we matched specialists and generalists on their productivity in the period before the 

Soviet collapse. As we discuss below, there are some significant differences in productivity 

between specialists and generalists in the years before the collapse. This is not surprising, 

because our measure of diversification relies on breadth of publications across mathematics 

subfields. In other words, the higher the productivity, the higher the probability of 

diversification. Thus to ensure that our results are not biased because of systematic differences in 

quality between specialists and generalists driven by our sample-selection method, we further 

constructed a matched sample based on individuals’ observables before the Soviet collapse. To 

construct the matched sample, we used a one-to-one coarsened exact matching (CEM) method 

(Blackwell et al., 2009; Iacus et al., 2011) based on mathematicians’ publication records in the 

pre-collapse period.5 The matched sample contains data on 4,076 mathematicians, of whom 

                                                           
5 To perform the one-to-one matching, we used the total citation-weighted number of publications, total number of 

publications, the first year of publication, and the publication trend during the 10 years prior to the Soviet collapse. 



19 

2,038 are specialists and 2,038 are generalists. We report our estimations for both the full and the 

matched samples. 

Dependent Variables 

To compare the creative output of specialists and generalists, we used three variables to capture 

both the quantity and the quality of their output. First, we used the count of publications per year 

to measure the quantity of their creative output. The issue with using the simple count of 

publications is that an increase in the number of publications may come at the expense of a 

decrease in their quality. To address this issue, we also used the quality-adjusted count of 

publications per year. Following previous studies (e.g., Furman and Stern, 2011; Azoulay, Stuart, 

and Wang, 2013; Vakili and McGahan, 2016), we used the number of citations each publication 

received in subsequent publications by 2014 to construct a citation-weighted count of 

publications per mathematician per year.6 Each publication is counted as 1 plus the number of 

future citations it received. For example, if a mathematician had two publications in 1985, one 

with 10 future citations and the other with 20 future citations, their quality-adjusted research 

output for 1985 is 32. We also measured the number of breakthrough publications per year for 

each scientist. The quality of creative output is highly skewed. Past research distinguished 

between processes that increase the mean distribution of creative output and those that increase 

the variance. While the former can raise the average quality of creative output, the latter can lead 

to an increase in the number of highly impactful publications—that is, breakthroughs. Following 

past research (Ahuja and Lampert, 2001; Phene, Fladmoe-Lindquist, and Marsh, 2006; Bikard, 

Murray, and Gans, 2015; Kaplan and Vakili, 2015), we first coded the publications belonging to 

the top 5 percent of highly cited publications in any given year as breakthroughs. Next, we 

                                                           
6 While older publications have more time to collect citations, the inclusion of year fixed effects in our regressions 

ensures that each publication is only compared with other publications in the same year. 
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counted the number of breakthroughs for each individual mathematician in any given year to 

construct an individual measure of breakthrough output per year. As a robustness check, we also 

constructed a separate measure of breakthrough output per year based on publications in the top 

10 percent of highly cited publications. 

Independent Variables 

We used three indicators (and their interactions) as main independent variables in all estimations. 

The first variable, 𝑆𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑖,𝑡, captures whether a mathematician in our sample is a specialist 

or a generalist at the time of the Soviet collapse. To construct this variable, we first built an index 

of diversification at the individual level capturing the heterogeneity in breadth of knowledge 

based on each mathematician’s publication portfolio during the period before the collapse (1980–

1989). The index is calculated as 1 minus the Euclidian distance in the multidimensional space of 

33 subfields (or MSC codes) of theoretical mathematics and is based on shares of publications in 

each of the 33 subfields, per mathematician. The Euclidian distance is equal to the square root of 

the Herfindahl index and hence is a more conservative measure of diversification. Formally, we 

calculated: 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥𝑖 = 1 − √∑(
𝑃𝑢𝑏𝐶𝑜𝑢𝑛𝑡𝑠,𝑖

𝑃𝑢𝑏𝐶𝑜𝑢𝑛𝑡𝑖
)2

33

𝑠=1

 

By construction, the higher the value of 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥𝑖, the greater the breadth of areas 

in which mathematician 𝑖 published before the Soviet collapse. The diversification measure is 

greater than or equal to 0 and never reaches 1. The highest possible value of the diversification 

index is .83 and characterizes researchers who published an equal number of publications in all 

33 subfields of theoretical mathematics. The lowest diversification index is 0 and characterizes 

mathematicians who published in one subfield of theoretical mathematics exclusively. For 

example, a mathematician who published a total of 10 papers, half in one subfield of theoretical 

mathematics and half in another, would have a diversification index of .29, and an equally 

productive colleague who published all their papers in one subfield of theoretical mathematics 

would have a diversification index of 0. In our sample, the highest diversification index is .531 

and the lowest is 0. In our main specification, we define generalists as mathematicians having a 

diversification index in the top 10 percent of the distribution (above .290) and specialists as those 
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having a diversification index of 0 (those who published in only one subfield). Our results 

remain robust to using a continuous measure of diversification. See tables A1 to A3 in the Online 

Appendix for robustness checks 

(http://journals.sagepub.com/doi/suppl/10.1177/0001839218793384). 

 

[Insert table 1 about here] 

The second variable, 𝑆𝑜𝑣𝑖𝑒𝑡𝐼𝑚𝑝𝑎𝑐𝑡𝑖, captures the degree to which each mathematician in 

our sample was affected by the Soviet collapse or, in other words, by the pace of advancement of 

the knowledge area. The variable separates mathematicians who experienced a substantial 

movement of the knowledge frontier in their areas, that is, those operating in a fast-paced 

knowledge domain, from mathematicians who experienced less of a movement, that is, those 

operating in a slow-paced domain. We followed the ranking in Agrawal, Goldfarb, and 

Teodoridis (2016) of the 33 primary MSC codes of theoretical mathematics indicating the degree 

to which Soviets contributed to each subfield before the Soviet collapse. Table 1 lists the 33 

subfields and their ranks. Based on these rankings, we constructed an index of Soviet exposure 

for each scientist in our dataset who published between 1980 and 1989. The index is calculated 

as the sum of shares of publications in each of the 33 subfields of theoretical mathematics, 

weighted by the ranking of the 33 subfields, per individual, for the entire period before the Soviet 

collapse. The higher the percentage of one’s publications in subfields where Soviets made 

greater contributions, the higher the Soviet impact index. Formally, we calculated: 

𝑆𝑜𝑣𝑖𝑒𝑡𝐼𝑚𝑝𝑎𝑐𝑡𝐼𝑛𝑑𝑒𝑥𝑖 = ∑
𝑃𝑢𝑏𝐶𝑜𝑢𝑛𝑡𝑠𝑖

𝑃𝑢𝑏𝐶𝑜𝑢𝑛𝑡𝑖 ∗ 𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝑅𝑎𝑛𝑘𝑂𝑟𝑑𝑒𝑟𝑠

33

𝑠=1

 

where 𝑃𝑢𝑏𝐶𝑜𝑢𝑛𝑡𝑠𝑖 is the total count of publications of scientist i in subfield s, 𝑃𝑢𝑏𝐶𝑜𝑢𝑛𝑡𝑖 is the 

total count of publications of scientist i, and 𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝑅𝑎𝑛𝑘𝑂𝑟𝑑𝑒𝑟𝑠 is the rank order of the 

corresponding subfield s in theoretical mathematics. The calculation considers the full 

publication portfolio during the period before the collapse (1980–1989). For example, a 

http://journals.sagepub.com/doi/suppl/10.1177/0001839218793384
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mathematician who published all their papers in “Integral Equations,” the most affected subfield 

of theoretical mathematics, would have a Soviet impact index of 1. If that person were to publish 

all their papers in “Fourier Analysis,” the second most affected subfield of theoretical 

mathematics, their Soviet impact index would be .5. And if that person were to publish half their 

work in “Integral Equations” and half in “Fourier Analysis,” their Soviet index impact would be 

.75. In our sample, the minimum value of the Soviet impact index is .030, the maximum value is 

1, the mean is .108, and the standard deviation is .112. We defined mathematicians most affected 

by the Soviet shock (𝑆𝑜𝑣𝑖𝑒𝑡𝐼𝑚𝑝𝑎𝑐𝑡𝑖 = 1) as those having a Soviet impact index in the top 10 

percent of the range. The indicator is equal to 0 for others. Our results remain robust to 

considering a continuous measure of Soviet impact. See tables A4 to A6 in the Online Appendix 

for robustness checks.7 

The third variable, 𝐴𝑓𝑡𝑒𝑟𝑆𝑜𝑣𝑖𝑒𝑡𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑖, is an indicator equal to 1 for years after the 

collapse of the Soviet Union (1990 and after) and 0 otherwise. 

Control Variables 

In all estimations, we included individual and year fixed effects. Individual fixed effects 

controlled for all time-invariant, idiosyncratic characteristics of each mathematician, such as first 

year of publication, innate quality, gender, race, and year of graduation. The year fixed effects 

controlled for all macro time trends that could influence mathematicians in the sample. 

We also controlled for the past productivity of mathematicians using the cumulative 

number of publications (since 1980). The variable is logged to account for its skewed 

distribution. Last, we controlled for the nonlinear effect of age by including an age-squared term 

                                                           
7 We use a 0/1 indicator instead of a continuous variable for ease of exposition. Our estimations rely on a triple 

interaction between our independent variables; hence using 0/1 indicators facilitates interpretation of the magnitude 

of the estimation results.  
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in all estimations.8 Because we could not observe the actual age of individuals, we used the 

number of years since their first publication in our sample. 

Estimation Strategy 

We used a difference-in-difference-in-differences (DDD) estimation method to compare the 

research output of specialists and generalists affected by the forward movement of the 

knowledge frontier in theoretical mathematics due to the Soviet collapse. The DDD estimation 

strategy is meant to address the endogeneity of output behavior and forward movement of the 

frontier by controlling for the underlying difference in the performance of specialists and 

generalists in relation to the forward movement of the frontier. Formally, we estimated: 

𝐷𝑉𝑖,𝑡 =  𝑓(𝛽1. 𝑆𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑠𝑡𝑖. 𝑆𝑜𝑣𝑖𝑒𝑡𝐼𝑚𝑝𝑎𝑐𝑡𝑖. 𝐴𝑓𝑡𝑒𝑟𝑆𝑜𝑣𝑖𝑒𝑡𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑡

+ 𝛽2. 𝑆𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑠𝑡𝑖. 𝐴𝑓𝑡𝑒𝑟𝑆𝑜𝑣𝑖𝑒𝑡𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑡

+  𝛽3. 𝑆𝑜𝑣𝑖𝑒𝑡𝐼𝑚𝑝𝑎𝑐𝑡𝑖. 𝐴𝑓𝑡𝑒𝑟𝑆𝑜𝑣𝑖𝑒𝑡𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑡 + 𝐶𝑖,𝑡 + 𝐼𝑖 +  𝛾𝑡 + 𝜀𝑖,𝑡) 

where 𝐷𝑉𝑖,𝑡 represents mathematician 𝑖’s output of interest (citation-weighted publication count, 

breakthrough count, and collaboration rate) in year t. 𝑆𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑠𝑡𝑖, 𝑆𝑜𝑣𝑖𝑒𝑡𝐼𝑚𝑝𝑎𝑐𝑡𝑖, and 

𝐴𝑓𝑡𝑒𝑟𝑆𝑜𝑣𝑖𝑒𝑡𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑡 are the three main independent variables. 𝐶𝑖,𝑡 represents the set of 

control variables (cumulative number of publications and age squared). 𝐼𝑖 and 𝛾𝑡 indicate 

individual and year fixed effects, respectively. Note that 𝑆𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑠𝑡𝑖 and 𝑆𝑜𝑣𝑖𝑒𝑡𝐼𝑚𝑝𝑎𝑐𝑡𝑖 are not 

included independently because they are absorbed by individual fixed effects, as their values are 

fixed at the individual level. Similarly, 𝐴𝑓𝑡𝑒𝑟𝑆𝑜𝑣𝑖𝑒𝑡𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑡 is not included independently 

because its effect is absorbed by the year fixed effects. 

𝛽2 captures the difference between post-Soviet outcome trends of specialists and 

generalists whose research was primarily in slow-paced areas—areas less affected by the Soviet 

                                                           
8 The inclusion of both individual fixed effects and year fixed effects automatically controls for the linear effect of 

individual age. 
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collapse. 𝛽1 is the main coefficient of interest for testing H1 and captures the differential 

performance of specialists relative to generalists in fast-paced areas of theoretical mathematics—

areas most affected by the Soviet collapse—using the difference in areas less affected as the 

baseline. 𝛽3 captures the change in the outcome trend of generalists who were active in fast-

paced areas compared with generalists whose research was predominantly in slow-paced areas, 

and 𝛽1 +  𝛽3 captures the equivalent change between specialists in fast- and slow-paced areas. 

Together, 𝛽3 and 𝛽1 +  𝛽3 are the coefficients of interest for testing H2. 

Because all three dependent variables are count variables, we used a conditional fixed-

effects panel Poisson model with robust standard errors clustered at the individual level and 

calculated using the Huber–White method in all estimations. The estimator is consistent in the 

presence of heteroskedasticity and overdispersion of the dependent variable (Silva and Tenreyro 

2006). 

Results 

[Insert table 2 about here] 

Descriptive statistics and correlations for the full sample and the matched sample are shown in 

table 2. In the full sample, a typical mathematician in our sample has produced approximately .7 

papers per year (or about two papers every three years) and has a citation-weighted publication 

count of approximately 5.7. She has also produced, on average, one publication in the top 5 

percent and two publications in the top 10 percent during the whole sample period (1980–2000). 

Note that the figures are skewed. Hence while many mathematicians in our sample have not 

produced any breakthroughs, others have produced multiple breakthroughs during the sample 

period. Furthermore, a typical mathematician has collaborated with at least one person every 
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other year, and most of her collaborations are unique. The means for the matched sample are 

slightly smaller than those for the full sample due to a lack of proper matches for individuals 

with extremely high levels of productivity. Nevertheless, overall there is substantial overlap 

between the full sample and the matched sample. 

[Insert table 3 about here] 

Table 3 details the differences between specialists and generalists on the key dimensions 

of interest for the period before the Soviet collapse. Panel A shows the differences in the full 

sample, and panel B reports them in the matched sample. In the full sample (panel A) there are 

almost twice as many specialists as generalists. This is not surprising given their graduate 

training and the importance of establishing a domain of specialty for career advancement in 

academia (e.g., Franzoni, Scellato, and Stephan, 2011; Stephan, 2012). The generalists in our 

sample produce on average approximately one more publication and 17 more citation-weighted 

publications in the period before the collapse. Furthermore, generalists generate approximately .2 

more publications in the top 5 percent cited list, relative to specialists, in that period. In other 

words, a typical generalist is 1.6 times more likely to produce highly cited publications. The 

difference is similar when focusing on the number of publications in the top 10 percent cited. 

Interestingly, specialists seem to collaborate more frequently on their papers but have fewer 

unique collaborators. This is consistent with the idea that generalists are more likely to work with 

a more diverse set of individuals across a wider range of domains. Panel B presents the 

comparative descriptive statistics for the matched sample. The main takeaway is that the 

differences between specialists and generalists in the full sample disappear once we restrict our 

sample to the CEM one. Last, due to our strict one-to-one matching, the numbers of specialists 
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and generalists are the same in the matched sample. The number of generalists in the matched 

sample is not considerably different from the number of generalists in the full sample. 

[Figure 1 about here] 

Figure 1 shows the difference between the citation-weighted number of publications 

produced by specialist and generalist mathematicians after the collapse of the Soviet Union 

across the faster-paced areas (i.e., most affected by the Soviet collapse) and slower-paced areas 

(i.e., least affected by the Soviet collapse). Figure 1a is based on the full sample, and figure 1b is 

based on the matched sample. In both graphs, the post-collapse values are adjusted based on the 

pre-collapse values. Specifically, for each group of mathematicians (specialists in faster-paced 

areas, specialists in slower-paced areas, generalists in faster-paced areas, and generalists in 

slower-paced areas), we display their weighted post-collapse output. The weighting is based on 

the ratio of their pre-collapse output to that of specialists in the slower-paced areas.9 This 

approach allows us to offer a concise visual representation of differences in creative output of all 

four groups of mathematicians post collapse. 

The graphs suggest that specialist mathematicians in faster-paced areas produced more 

citation-weighted publications than generalist mathematicians in those areas. In contrast, in the 

slower-paced areas, specialist mathematicians produced significantly fewer citation-weighted 

publications than generalist mathematicians. The observed differences are consistent with 

hypothesis 1. Moreover, generalist mathematicians in faster-paced areas produced fewer citation-

weighted publications than generalists in slower-paced areas, consistent with hypothesis 2.10 

                                                           
9 The approach is neutral to the choice of baseline group. 
10The graphs also suggest that generalists in faster-paced domains do worse than specialists in slower-paced 

domains. This seems to indicate that the downsides of being a generalist are worse than those of being a specialist, 

but this result should be interpreted carefully. Our theory suggests that as the pace of change increases, specialists 

thrive and generalists suffer. Hence it is possible that the difference between specialists in slower and generalists in 

faster domains is driven by the fact that the “slower” domains we observe are in fact not very slow, whereas the 

“faster” domains are indeed very fast. In other words, the observation comparing generalists and specialists across 
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[Table 4 about here] 

Next we tested these predictions using regression analysis. Table 4 shows estimation 

results for the change in the creative output of specialists and generalists in slower- and faster-

paced domains. Model 1 of table 4 shows estimation results using count of publications as the 

dependent variable. The estimated 𝛽2 suggests a statistically significant 8-percent relative decline 

in the number of publications by specialists in slow-paced areas of theoretical mathematics 

compared with generalists in those areas.11 The decline is equivalent to approximately one fewer 

publication by specialists compared with generalists after the collapse. In contrast, there is a 

relative increase of approximately 37 percent in the number of publications by specialists over 

generalists in faster-paced areas of mathematics, using the change in the differential performance 

of specialists relative to generalists in less affected areas as the baseline. The 37-percent increase 

is equivalent to approximately three extra publications after the collapse. The results are 

consistent with H1, suggesting that specialists have higher creative performance than generalists 

in faster-paced areas. The negative and significant 𝛽3 suggests a 23-percent decrease in creative 

output of generalists in faster-paced knowledge domains compared with generalists in slower-

paced knowledge domains, consistent with H2. Also, although not statistically significant 

(p = .35), compared with specialists in the less affected areas of mathematics, specialists in the 

most affected areas increased their publication count by approximately 5 percent after the Soviet 

collapse (based on the sum of 𝛽1 and 𝛽3). 

                                                           
slower- and faster-paced domains is arguably context-specific and depends on the level of increase in the pace of 

change in a domain and the relative length of the period during which the domain experiences faster or slower 

changes. 
11 To calculate percentage change in output trends, we compute the incidence rate ratio from the estimated 

coefficients. 
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Model 2 shows results for the citation-weighted number of publications. The 

interpretation of results is similar to those reported for model 1. The coefficients are larger, 

however, which suggests that the relative increase in creative performance of specialists in 

affected areas after the Soviet collapse is driven partly by an increase in the quantity of their 

creative output and partly by an increase in the average quality of their creative output (measured 

as the number of citations to their publications). The estimated 𝛽2 suggests that, in slower-paced 

areas of mathematics, specialists produced approximately 22 percent fewer citation-weighted 

publications per year than generalists did in years after 1989. The decline is equivalent to 

producing approximately three fewer citation-weighted publications per year after the collapse. 

In contrast, when we use the change in the differential performance of specialists versus 

generalists in less affected areas as the baseline, the estimated 𝛽1 suggests that in faster-paced 

areas of mathematics, specialists increased their citation-weighted publication output relative to 

generalists by approximately 83 percent in years after 1989. This is equivalent to producing 

approximately four more citation-weighted publications per year during the post-Soviet period. 

The negative and significant 𝛽3 suggests a 37-percent decrease in creative output of generalists 

in faster-paced knowledge domains compared with generalists in slower-paced knowledge 

domains. The results also indicate that, compared with specialists in less affected areas, 

specialists in the most affected areas increased their performance by a statistically significant 

margin of approximately 16 percent after the Soviet collapse. 

Models 3 and 4 report the analog estimation results for the matched sample. The 

estimated coefficients of 𝛽1 and 𝛽3 are slightly larger. They are in line with those for the full 

sample and depict trends aligned with those described above. Overall, the results in table 4 

provide strong support for the effects hypothesized in H1 and H2. 
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One potential concern with these interpretations is that the observed change in the 

differential performance of specialists and generalists in the faster- and slower-paced areas of 

mathematics might have begun before the Soviet collapse and that our estimations are driven by 

these pre-trends. To address this concern, we checked the timing of changes in specialists’ 

performance by estimating their differential performance relative to generalists’ in years before 

and after the Soviet collapse in 1989. We used the 1987 to 1989 performance difference of 

specialists and generalists in the non-affected areas as the baseline (i.e., the time right before the 

Soviet collapse) and examined the change in citation-weighted output of specialists and 

generalists over six periods: 1981–1983, 1984–1986, 1990–1992, 1993–1995, 1996–1998, and 

1999–2000. The use of citation-weighted output helps us capture the changes in both quantity 

and quality over time. The estimations are based on the same DDD estimator as before, where 

we replace the 𝐴𝑓𝑡𝑒𝑟𝑆𝑜𝑣𝑖𝑒𝑡𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑡 dummy with dummies for each of the three-year periods 

described. We used groups of three years because many mathematicians in our sample publish 

once every few years. In testing for pre-trends, we used the unmatched sample (i.e., full sample) 

to ensure that the pre-trends are not masked by our matching procedure. In the Online Appendix, 

we show that the graphs are similar if we use the matched sample (figure A1). If changes in the 

differential performance of specialists and generalists indeed predate the Soviet collapse, we 

should observe these trends in the 1981–1983, 1984–1986, and 1996–1998 periods. In figure 2a 

we plot the estimated yearly 𝛽2 coefficients, which represent the difference in citation-weighted 

outputs of specialists relative to generalists in slower-paced areas. We observe a decrease in the 

estimated difference in output between specialists and generalists in slower-paced areas after the 

collapse of the Soviet Union. 

[Insert figure 2 about here] 
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In figure 2b we plot the estimated yearly 𝛽1, which represents the relative difference in 

citation-weighted outputs of specialists relative to generalists in faster-paced areas. The estimates 

suggest that the change in the differential performance of specialists and generalists in these 

faster-paced areas increases after the fall of the Soviet Union, in line with H1. In figure 2c we 

plot the estimated yearly 𝛽3, which represents the difference in citation-weighted outputs 

between generalists in faster-paced areas and generalists in slow-paced areas. Figure 2d further 

shows the difference in citation-weighted output between specialists in faster-paced areas and 

specialists in slower-paced areas (𝛽1 + 𝛽3). In line with H2, we observe a decrease in the 

performance of generalists in faster- versus slower-paced areas of theoretical mathematics after 

the Soviet collapse. In contrast, we observe an increase in the performance of specialists in 

faster-paced areas after the collapse. In all figures there are no indications of pre-Soviet collapse 

trends, confirming that the estimated changes in table 1 are attributable to years following the fall 

of the Soviet Union. 

In table A7 in the Online Appendix we examine the differential propensity of generalists 

and specialists to produce breakthroughs in faster- and slower-paced knowledge domains. The 

estimates are in line with those reported in table 1 for overall creative output and are consistent 

with H1 and H2. Theoretically, the findings imply that specialists in faster-paced areas not only 

absorb the newly emerged knowledge components faster than generalists but also use the new 

knowledge more quickly to address the more fundamental gaps in their domain of specialty. 

Their faster and more effective absorption and use of new knowledge can potentially crowd out 

generalists’ efforts and push generalists to tackle less impactful opportunities. The opposite 

argument holds for generalists in slower-paced domains. The results suggest that the usual trade-
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off between quantity and quality does not necessarily hold in all contexts. In certain conditions, 

one creative type may show superior performance on both dimensions of quantity and quality. 

We also tested the role of competition for complementary resources as a force driving the 

differential performance of specialists and generalists after the Soviet collapse. We examined 

this mechanism by investigating the change in the collaboration patterns of specialists and 

generalists. Access to complementary collaborators is an important and limited resource in 

academia, as in many other creative contexts. Past research has suggested that scientists choose 

collaborators strategically (Leahey and Reikowsky, 2008; Bikard, Murray, and Gans, 2015). 

Following our theoretical arguments, we expect specialists to be more sought after in faster-

paced domains but generalists to be more sought after in slower-paced domains. We therefore 

expect an increase in collaboration levels of specialists (compared with generalists) in faster-

paced domains of mathematics and a decline in their collaboration levels in slower-paced 

domains. Furthermore, we expect a decrease in collaboration of generalists in slower- versus 

faster-paced domains and a reverse effect for specialists. 

[Insert table 5 about here] 

To test these assertions, in table 5 we present results for the change in the collaboration 

rates of specialists and generalists after the fall of the Soviet Union. As before, we present results 

using our full sample in models 1 and 2 and results using our matched sample in models 3 and 4. 

As anticipated, the estimated 𝛽2 suggests a relative decline of 7 percent and 10 percent in 

specialists’ number of collaborators and specialists’ number of unique collaborators, 

respectively, compared with generalists, in slower-paced domains. In faster-paced domains, 

however, specialists’ total number of collaborators and the number of unique collaborators 

increased by up to 46 percent and 59 percent, respectively, compared with generalists, using their 
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differential change in the slower-paced domains as the baseline. Similarly, we observe declines 

of 31 and 33 percent in generalists’ numbers of collaborators and numbers of unique 

collaborators, respectively, in faster- versus slower-paced domains, while specialists in faster-

paced domains experience increases of 18 percent and 7 percent, respectively, over their 

specialist counterparts in slower-paced domains. Figures A2 and A3 in the Online Appendix 

show the timing of change in specialists’ and generalists’ collaboration rates. As before, we do 

not observe any collaboration trends in years before the Soviet collapse. 

While these results show the change in collaboration rates of specialists and generalists 

after the Soviet collapse, they do not show changes in the compositions of collaborations—

changes in the rates of specialist–specialist, specialist–generalist, and generalist–generalist 

collaborations. Unpacking the changes in collaboration composition is not empirically 

straightforward. Collaboration is a matching process that adds an additional layer of complexity 

to our estimations. For example, while one creative type (say, specialists) may decide to reduce 

its collaboration with the other (say, generalists) due to its lower benefits, the latter may put more 

effort in securing collaborations with the former due to its higher benefits. Hence it is difficult to 

make an ex-ante theoretical prediction about changes in some collaboration types. Moreover, 

because mathematicians on average have few collaborators, breaking down the small number of 

collaborators into different categories can lead to less accurate estimations with larger standard 

errors. Nonetheless, we provide some evidence of change in collaboration compositions in tables 

6 and 7. The estimates suggest a statistically significant decline in collaboration among 

specialists and an increase in collaborations between specialists and generalists in slower-paced 

domains (𝛽2). In comparison, collaborations in the faster-paced environments do not experience 

such a change (𝛽1). In other words, specialists and generalists in faster-paced domains remain 
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more likely to collaborate with specialists and less likely to collaborate with generalists than their 

counterparts in slower-paced domains who prefer collaborating with generalists over specialists. 

Moreover, generalists in faster-paced environments reduce collaboration with other generalists 

when compared with generalists in slower-paced environments, while maintaining approximately 

the same levels of collaboration with specialists (𝛽3). At the same time, specialists in faster-

paced domains increase collaboration with other specialists and decrease collaboration with 

generalists, when compared with specialists in slower-paced domains (𝛽1 + 𝛽3), a statistically 

significant result. This finding is in line with our assertion that the observed creative advantages 

of specialists in faster-paced domains and of generalists in slower-paced domains are associated 

with a higher propensity of these individuals to be desired collaborators. 

[Insert tables 6 and 7 about here] 

We conducted several additional robustness checks to further corroborate our findings. 

One source of concern is that our results might be affected by an increase in labor market 

competition due to the increase in migration of Soviet mathematicians to other countries. To 

address this concern, we tested whether our results hold in geographical areas with little to no 

Soviet impact. Following the empirical strategy in Agrawal, Goldfarb, and Teodoridis (2016: 

page 113) we focused on Japan, “a country with no documented evidence of Soviet immigration 

in mathematics” and “which consistently ranks in the top ten mathematics research.” We find 

that all our results for generalists and specialists persist in the subset of Japanese-flagged authors, 

which indicates that our estimations are the result of the pace of the emergence of new 

knowledge components and not of labor market competition. The results are reported in tables 

A8 to A10 in the Online Appendix. 
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Moreover, we provide a battery of additional robustness checks for our estimations in the 

Online Appendix. Tables A11 to A13 show that our results hold if we use the 50-percent 

threshold on the diversification index to define specialists and generalists. In addition, we show 

robustness to the use of a continuous measure of specialization (tables A1 to A3) and to a 

continuous measure of the impact of the Soviet collapse on different domains of mathematics 

(tables A4 to A6). Finally, tables A14 to A16 show the sensitivity of our estimates to the 

exclusion of individual fixed effects and year fixed effects. Overall, the estimates and their 

interpretation are robust to these additional tests. 

Discussion and Conclusion 

Knowledge domains are not always stable. When the pace of change is slow, creative workers 

might need to reach beyond the traditional boundaries of their field to identify new 

recombination opportunities. When the pace of change accelerates, however, creative workers 

increasingly succeed by identifying and exploiting recombination opportunities emerging at the 

knowledge frontier. Both approaches can drive creative performance, but they constitute two 

different types of creative recombination that require very different skills. Individuals who 

spread their efforts across several domains and become generalists are likely to develop the 

capability to carry out recombinations across those domains efficiently. In contrast, individuals 

who concentrate their research efforts in a single knowledge domain and become specialists are 

likely to excel at taking advantage of new knowledge in their domain of specialty. The pace of 

change in a domain is therefore likely to affect the relative benefits of specialization in creative 

work. 

Creative workers face a trade-off in deciding whether to focus their efforts on a narrow 

research domain or instead to spread their work across various fields. Both strategies present 
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advantages, and the superiority of each is a matter of debate in prior literature. We proposed that 

those disagreements might be driven in part by attempts to generalize from different domains 

exhibiting different paces of change. Just as the performance of firms’ strategy is linked to the 

dynamics of the field in which the firms compete, the creative performance of individuals with 

different levels of specialization is likely to be linked to the dynamics of the knowledge domain 

in which they work. In particular, generalists are likely to perform better in slower-paced 

domains whereas specialists should perform best in faster-paced ones. Furthermore, those 

dynamics are likely to be amplified by within-domain competition for scarce resources. The 

performance of a specific creative strategy depends on the performance of competitors’ strategy. 

Even though generalists in faster-paced domains are likely to have access to more recombination 

opportunities than generalists in slower-paced domains, they are likely to suffer much more from 

the competition of specialists. 

We hypothesized and found empirical support that generalists perform relatively better 

than specialists in slower-paced environments but perform relatively worse as the pace of change 

increases. The Soviet collapse led to an unexpected and substantial acceleration of the pace of 

change in some subfields of theoretical mathematics but not in others. In the fields most affected, 

the performance of specialists improved sharply relative to that of generalists. At the same time, 

generalists performed relatively better than their specialist colleagues in the less affected fields, 

where the pace of change was slower. Differences in performance are visible across a variety of 

measures, including publication counts, citation-weighted publication counts, counts of 

breakthroughs, and even individual ability to attract collaborators. Furthermore, we find that the 

performance of generalists in affected fields decreases as the pace of change accelerates, 
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presumably because of the steep increase in the ability of specialist competitors to secure scarce 

resources in those domains. 

One should note that our theoretical arguments do not rely on the type of sudden change 

in the knowledge frontier that we observe in our empirical setting. The collapse of the Soviet 

Union and the sudden influx of new knowledge in some areas of theoretical mathematics versus 

others is an essential part of our empirical strategy, but it is not required theoretically. This 

natural experiment helps us empirically isolate the variance in the pace of change across domains 

independent of the ex-ante activities of the creative workers in those domains. However, our 

theoretical claims apply to any other setting in which creative output relies on knowledge 

recombination.   

Nevertheless, while the natural experiment of the unexpected Soviet collapse provides a 

rewarding test for our theoretical predictions, some limitations remain. First, despite the richness 

of our data and the comprehensive role of theoretical mathematics in creative work across a 

multitude of areas, we studied one setting. The trade-offs associated with being specialists or 

generalists might be different in other creative settings. Moreover, we focus here on a specific 

type of change. At times, some discoveries challenge the very foundations of entire knowledge 

domains, provoking what Kuhn (1970) referred to as scientific revolutions. For example, the 

introduction of Einsteinian dynamics in theoretical physics challenged many of the assumptions 

held by Newtonian physicists. Past research suggested that specialists in a domain that has 

experienced a scientific revolution are more likely to resist adapting to the foundational changes 

in their domain of expertise (Kuhn, 1970: 151). In cases of scientific revolution in a domain, 

specialists’ domain-specific heuristics and problem-solving skills may no longer give them any 

advantage over generalists, as they may all be challenged by the radical changes in the 
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foundations of the field. Thus we make no strong claims of generalizability and hope that future 

research will explore whether different types of change might have different consequences for 

the performance of specialists and generalists. 

Second, our study is limited by our somewhat static operationalization of the generalist 

and specialist creative strategies. The ability of individuals to become generalists or specialists 

varies. Moreover, the distinction between specialists is not always as clear as it appears in 

theoretical mathematics. The implications of our results for individuals specializing in tools or 

topics that have broad applications (e.g., general purpose technologies) remain unclear. Creative 

workers might also become specialists along one dimension and generalists along another one 

(Kacperczyk and Younkin, 2017). Besides, individuals might shift strategy over the span of their 

career (Mannucci and Yong, 2017). For example, junior researchers might exhibit greater 

specialization whereas senior individuals might exhibit greater diversification. In our empirical 

analysis, we controlled for a quadratic effect of age to account for this possibility. But this 

approach does not consider that junior specialists might become increasingly diverse as they 

advance in their careers. At the same time, it is unclear whether generalists might narrow their 

focus as they encounter a prolific area of research. To address this concern, we calculated our 

index of diversification on a rolling basis to seek evidence of significant changes in 

diversification at the individual level throughout the course of our dataset. We did not find such 

evidence. 

Our study makes several theoretical contributions. First, we describe some of the trade-

offs of specialization in creative work. Before this study, a large stream of work described the 

advantages of being a generalist, highlighting the benefits of brokering otherwise distant 

knowledge components (Hargadon and Sutton, 1997; Uzzi and Spiro, 2005; Audia and Goncalo, 
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2007; Cattani and Ferriani, 2008; Jeppesen and Lakhani, 2010). Other studies instead 

emphasized benefits of specialization such as specialists’ deeper understanding of their 

knowledge domain and their clearer identity (Birnbaum, 1981; Leahey, 2007; Jones, 2009; Conti, 

Gambardella, and Mariani, 2013). We extend this literature by highlighting that the decision of 

whether to become a specialist or a generalist is in fact a strategic one and that the creative 

performance of generalists and specialists depends on the context in which they operate. 

Second, our findings highlights the existence of two types of recombination: “horizontal 

recombination” in which creative workers broker components across knowledge domains and 

“vertical recombination” in which they take advantage of the forward movement of the 

knowledge frontier. This distinction provides a new perspective on the literature on distant 

versus local search (Fleming, 2001; Kaplan and Vakili, 2015; Leahey, Beckman, and Stanko, 

2017). Local recombinations are often described as less risky and somehow easier than more 

distant ones. The distant versus local terminology might therefore lead to overstating the value of 

the work of generalists while understating that of specialists. Instead, our study highlights that 

recombination based on newly emerging knowledge in a faster-paced domain is not as trivial as 

prior literature suggests. It involves important skills to identify those opportunities early on and 

to exploit them efficiently. The role of those skills for creative success has received little 

attention to date, but our study highlights that specialists tend to outperform their generalist peers 

in this respect. 

Third, our study highlights the crucial role of competitive dynamics in creative work. 

Prior research described such a dynamic in the case of individual social status in science. The 

typical argument is that high-status individuals can reap more rewards from the products of their 

work, which further increases their performance at the expense of their competitors’ (e.g., 
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Reschke, Azoulay, and Stuart, 2017). Our study extends this stream of research by highlighting 

that the same competitive dynamic can be triggered by variations in the pace of change in a 

knowledge domain. More specifically, we find that the same creative strategies can lead to 

different levels of performance depending on the success of the competitors’ strategy. Studies of 

creative performance that overlook these competitive dynamics might therefore lead to erroneous 

conclusions. 

Fourth, and related to the issue of competition, our study contributes to the literature on 

collaboration in knowledge creation by contextualizing the common finding that collaboration is 

associated with high creative performance. Past research has emphasized the key role of 

collaboration in fostering creativity by facilitating more diverse knowledge recombinations and 

more efficient selection of good ideas (Reagans, Zuckerman, and McEvily, 2004; Fleming, 

Mingo, and Chen, 2007; Singh and Fleming, 2010). Yet these studies usually overlook that 

collaboration is often a choice. Our findings therefore contribute to a growing literature 

exploring the determinants of collaboration strategies in creative work (Leahey and Reikowsky, 

2008; Bikard, Murray, and Gans, 2015; Bikard, Vakili, and Teodoridis, 2018) by highlighting 

how the relative cognitive advantage of individuals in a domain shapes their collaboration 

opportunities. We also highlight how preferential access to complementary collaborators can 

reinforce the creative advantage. More broadly, our results call for more research to understand 

the dynamics of competition for collaboration and the complex market for collaborators. 

Additionally, our study has implications for the organization of firms’ R&D. The 

contribution of generalists and specialists to R&D performance is distinct but potentially 

complementary. While generalists might draw on components located beyond the traditional 

knowledge domain of the firm, specialists are likely to be better able to take advantage of the 
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emergence of new components. Both sets of skills might be valuable. In fact, the differences 

between the two creative strategies can provide opportunities for productive collaborations 

between specialists and generalists (Teodoridis, 2017). Our study suggests that the appropriate 

balance of specialists and generalists inside the firm will depend not only on its intention to 

absorb external knowledge from within its area of specialization or beyond it but also on the pace 

of change in those knowledge domains. 

Our study constitutes a first step in highlighting how the pace of change shapes the 

performance of creative workers. It also highlights important trade-offs associated with 

specialization in creative work. The importance of furthering this line of research should not be 

understated. Creativity and innovation play a growing role in individual and firm performance, 

and there is no sign that the pace of economic change might stop evolving differently across 

domains and over time. By highlighting the fact that creative workers rarely evolve in static 

knowledge domains, we hope our study enhances our understanding of the drivers of creative 

performance and triggers future research on creative strategies in a changing world. 
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Table 1. Subfield Rank of Soviet Contributions to Theoretical Mathematics* 

Subfield 

rank 

Theoretical 

mathematics category Description 

1 Analysis Integral equations  

2 Analysis Fourier analysis 

3 Analysis Partial differential equations 

4 Analysis Sequences, series, summability 

5 Analysis Potential theory 

6 Analysis Calculus of variations and optimal control; optimization 

7 Analysis Integral transforms, operational calculus 

8 Analysis Functions of a complex variable 

9 Algebra General algebraic systems 

10 Analysis Difference equations and functional equations 

11 Analysis Operator theory 

12 Algebra Non-associative rings and non-associative algebras 

13 Analysis Approximations and expansions 

14 Geometry Global analysis, analysis on manifolds 

15 Analysis Several complex variables and analytic spaces 

16 Analysis Special functions 

17 Algebra Topological groups, lie groups, and analysis upon them 

18 Geometry General topology 

19 Algebra Group theory and generalizations 

20 Algebra Measure and integration 

21 Algebra Category theory; homological algebra 

22 Analysis Algebraic topology  

23 Algebra Real functions, including derivatives and integrals  

24 Geometry Convex geometry and discrete geometry 

25 Algebra Algebraic geometry 

26 Analysis Abstract harmonic analysis  

27 Algebra Linear and multilinear algebra; matrix theory  

28 Algebra Order theory 

29 Algebra Field theory and polynomials 

30 Algebra Combinatorics 

31 Geometry Geometry  

32 Geometry Manifolds 

33 Algebra Commutative rings and algebras 

* The ranking on the left indicates the level of impact of the fall of the Soviet Union on the subfield. The 

higher the subfield’s ranking, the more it was affected by the shock. The ranking is based on Agrawal, 

Goldfarb, and Teodoridis (2016). 
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Table 2. Summary Statistics for the Full Sample and the Matched Sample (1980–2000) 

Variable Mean S.D. 

Panel A: Full Sample (N = 123,139)   

Citation-weighted number of publications per year 5.724 35.193 

Simple publication count per year .732 1.299 

Number of breakthrough publications (in top 5% cited) per year .043 .275 

Number of breakthrough publications (in top 10% cited) per year .090 .402 

Number of collaborators between 1980 and 1988 .541 1.519 

Number of unique collaborators between 1980 and 1988 .413 .937 

Panel B: Matched Sample (N = 81,762) 

Citation-weighted number of publications per year 4.678 20.178 

Simple publication count per year .690 1.151 

Number of breakthrough publications (in top 5% cited) per year .037 .229 

Number of breakthrough publications (in top 10% cited) per year .081 .346 

Number of collaborators between 1980 and 1988 .505 1.327 

Number of unique collaborators between 1980 and 1988 .412 .920 
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Table 3. Specialists versus Generalists before the Collapse of the Soviet Union (1980–1989)* 

Variable Specialists Generalists 

t-test 

difference 

Panel A: Full Sample    

Number of mathematicians 4,042 2,213  

Total citation-weighted number of publications between 

1980 and 1988 

44.777 

(108.712) 

61.568 

(148.799) 

–16.791•• 

Total number of publications between 1980 and 1988 8.047 

(9.413) 

8.856 

(10.386) 

–.809• 

 

Total number of breakthrough publications (in top 5% 

cited) between 1980 and 1988 

.356 

(1.116) 

.560 

(1.579) 

–.204•• 

Total number of breakthrough publications (in top 10% 

cited) between 1980 and 1988 

.780 

(1.710) 

1.102 

(2.244) 

–.322•• 

Average number of collaborators between 1980 and 1988 .703 

(1.386) 

.588 

(.729) 

.115•• 

Average number of unique collaborators between 1980 

and 1988 

.446 

(.572) 

.480 

(.517) 

–.034• 

Panel B: Matched Sample 

Number of mathematicians 2,038 2,038  

Total citation-weighted number of publications between 

1980 and 1988 

39.915 

(66.830) 

41.728 

(67.621) 

–1.813 

Total number of publications between 1980 and 1988 7.261 

(5.395) 

7.337 

(5.323) 

–.075 

Total number of breakthrough publications (in top 5% 

cited) between 1980 and 1988 

.340 

(.910) 

.376 

(.891) 

–.036 

Total number of breakthrough publications (in top 10% 

cited) between 1980 and 1988 

.816 

(1.537) 

.835 

(1.490) 

–.019 

Average number of collaborators between 1980 and 1988 .528 

(.772) 

.533 

(.631) 

.018 

Average number of unique collaborators between 1980 

and 1988 

.410 

(.520) 

.448 

(.478) 

.037• 

• p < .05; •• p < .01. 

* Standard deviations are in parenthesis in Column 1 and 2, and p-values are in parentheses in Column 

3. 
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Table 4. Changes in the Publication Output of Specialist and Generalist Mathematicians after the Collapse of the Soviet Union* 

  Full Sample  Matched Sample 

  
Simple count of 

publications  

Citation-weighted 

count of publications  

Simple count of 

publications  

Citation-weighted 

count of publications 

Variable  (1)  (2)  (3)  (4) 

Specialist × SovietImpact × 

AfterSovietCollapse (𝛽1) 

 .315•• 

(.113) 

 .605•• 

(.205) 

 .390•• 

(.129) 

 .777•• 

(.253) 

Specialist × AfterSovietCollapse 

(𝛽2) 

 –.078• 

(.032) 

 –.254• 

(.103) 

 –.056 

(.038) 

 –.241•• 

(.080) 

SovietImpact × 

AfterSovietCollapse (𝛽3) 

 –.264•• 

(.099) 

 –.454•• 

(.176) 

 –.382•• 

(.114) 

 –.610•• 

(.208) 

No. of observations  113,512  113,406  76,795  76,783 

No. of mathematicians  6,140  6,132  4,024  4,024 

Chi2  1059.76••  203.81••  663.53••  104.60•• 

Log-likelihood  –104275.08  -786985.39  -68821.16  -451570.52 
• p < .05; •• p < .01. 

* The data are a panel at the author level based on publication data from 1980 through 2000. The unit of analysis is the author-year. All models 

are conditional fixed-effect Poisson with robust standard errors, clustered at the author level, in parentheses. All models include controls for 

cumulative publications, nonlinear age profile, and individual and year fixed effects. The difference in the number of observations across 

models is a consequence of estimating all our models using the xtpoisson command in Stata; the command drops units without within-individual 

variance after factoring in all the independent and control variables. 
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Table 5. Changes in the Collaboration Rates of Specialist and Generalist Mathematicians after the Collapse of the Soviet Union* 

 Full Sample  Matched Sample 

 
 Total number of 

collaborators  

Total number of 

unique collaborators  

Total number of 

collaborators  

Total number of 

unique collaborators 

Variable  (1)  (2)  (3)  (4) 

Specialist × SovietImpact × 

AfterSovietCollapse (𝛽1) 

 .428•• 

(.157) 

 .340• 

(.139) 

 .457• 

(.179) 

 .380• 

(.157) 

Specialist × AfterSovietCollapse 

(𝛽2) 

 –.110• 

(.046) 

 –.074• 

(.037) 

 –.100+ 

(.054) 

 –.057 

(.044) 

SovietImpact × 

AfterSovietCollapse (𝛽3) 

 –.260• 

(.132) 

 –.270• 

(.119) 

 –.396• 

(0.155) 

 –.371•• 

(.135) 

No. of observations  96,917  96,917  65,986  65,986 

No. of mathematicians  5,243  5,243  3,459  3,459 

Chi2  122.91••  196.63••  63.56••  116.44•• 

Log-likelihood  88857.85  -71016.25  -57694.92  -48285.65 
+ p < .10; • p < .05; •• p < .01. 

* The data are a panel at the author level based on publication data from 1980 through 2000. The unit of analysis is the author-year. All models 

are conditional fixed-effect Poisson with robust standard errors, clustered at the author level, in parentheses. All models include controls for 

cumulative publications, nonlinear age profile, and individual and year fixed effects. The difference in the number of observations across 

models is a consequence of estimating all our models using the xtpoisson command in Stata; the command drops units without within-individual 

variance after factoring in all the independent and control variables. 
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Table 6. Changes in Collaboration with Specialist Mathematicians after the Collapse of the Soviet Union* 

  Full Sample  Matched Sample 

 
 Total number of 

collaborators  

Total number of 

unique collaborators  

Total number of 

collaborators  

Total number of 

unique collaborators 

Variable  (1)  (2)  (3)  (4) 

Specialist × SovietImpact × 

AfterSovietCollapse (𝛽1) 

 .195 

(.412) 

 .348 

(.356) 

 .191 

(.484) 

 .399 

(.397) 

Specialist × AfterSovietCollapse 

(𝛽2) 

 –.621•• 

(.092) 

 –.541•• 

(.071) 

 –.616•• 

(.101) 

 –.526•• 

(.081) 

SovietImpact × 

AfterSovietCollapse (𝛽3) 

 .071 

(.397) 

 –.213 

(.345) 

 –.013 

(.466) 

 –.299 

(.381) 

No. of observations  53,812  53,812  34,459  34,459 

No. of mathematicians  2,905  2,905  1,798  1,798 

Chi2  372.09••  540.51••  203.90••  266.56•• 

Log-likelihood  -28263.91  -21838.02  -16367.74  -13485.23 
• p < .05; •• p < .01. 

* The data are a panel at the author level based on publication data from 1980 through 2000. The unit of analysis is the author-year. All models 

are conditional fixed-effect Poisson with robust standard errors, clustered at the author level, in parentheses. All models include controls for 

cumulative publications, nonlinear age profile, and individual and year fixed effects. The difference in the number of observations across 

models is a consequence of estimating all our models using the xtpoisson command in Stata; the command drops units without within-individual 

variance after factoring in all the independent and control variables. 
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Table 7. Changes in Collaboration with Generalist Mathematicians after the Collapse of the Soviet Union* 

  Full Sample  Matched Sample 

 
 

Total number of 

collaborators  

Total number of 

unique 

collaborators  

Total number of 

collaborators  

Total number of 

unique 

collaborators 

Variable  (1)  (2)  (3)  (4) 

Specialist × SovietImpact × 

AfterSovietCollapse (𝛽1) 

 .177 

(.263) 

 .117 

(.247) 

 .758• 

(.317) 

 .521+ 

(.306) 

Specialist × 

AfterSovietCollapse (𝛽2) 

 .416•• 

(.088) 

 .402•• 

(.075) 

 .276• 

(.115) 

 .340•• 

(.100) 

SovietImpact × 

AfterSovietCollapse (𝛽3) 

 –.530•• 

(.185) 

 –.444• 

(.172) 

 –.797•• 

(.200) 

 –.658•• 

(.192) 

No. of observations  44,207  44,207  33,611  33,611 

No. of mathematicians  2,352  2,352  1,754  1,754 

Chi2  274.43••  332.42••  251.86••  287.85•• 

Log-likelihood  –

19700.48 

 –

15988.21 

 –14616.25  –12246.95 

+ p < .10; • p < .05; •• p < .01. 

* The data are a panel at the author level based on publication data from 1980 through 2000. The unit of analysis is the author-year. All models 

are conditional fixed-effect Poisson with robust standard errors, clustered at the author level, in parentheses. All models include controls for 

cumulative publications, nonlinear age profile, and individual and year fixed effects. The difference in the number of observations across 

models is a consequence of estimating all our models using the xtpoisson command in Stata; the command drops units without within-individual 

variance after factoring in all the independent and control variables. 
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Figure 1. Adjusted average citation-weighted number of publications by specialist and generalist 

mathematicians in faster-paced and slower-paced areas after the collapse of the Soviet Union. 
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Figure 1a: Full sample
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Figure 1b: Matched Sample
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Figure 2. Estimated relative difference in the citation-weighted number of publications of specialists 

versus generalists after the collapse of the Soviet Union.* 

 

  

* We base this figure on 10 years of publication data before the collapse of the Soviet Union and 10 years after the collapse. Each 

point on graph (a) represents the coefficient value on the covariate Specialist × TimePeriod and thus describes the relative 

difference in quality-adjusted publication rates between specialists and generalists in slower-paced areas. Each point on graph (b) 

represents the coefficient value on the covariate Specialist × SovietImpact × TimePeriod and thus describes the relative 

difference in quality-adjusted publication rates between specialists and generalists in faster-paced areas and the same difference 

in slower-paced areas. Each point on graph (c) represents the coefficient value on the covariate SovietImpact × TimePeriod and 

thus describes the relative difference in quality-adjusted publication rates between generalists in faster- versus slower-paced 

areas. Each point on graph (d) represents the sum of coefficients 𝛽1 + 𝛽3 and thus describes the relative difference in quality-

adjusted publication rates between specialists in faster- versus slower-paced areas. The bars surrounding each point represent the 

95% confidence interval. Note that the larger confidence intervals are due to reduced degrees of freedom, as we split the post-

Soviet dummy into multiple period dummies. All values are relative to the base-year group of 1987–1989. 
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