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Explaining Heterogeneity in the Organization of Scientific Work 

Abstract 

Prior studies of academic science have largely focused on researchers in life sciences or engineering. 

However, while academic researchers often work under similar institutions, norms, and incentives, they 

vary greatly in how they organize their research efforts across different scientific domains. This 

heterogeneity, in turn, has important implications for innovation policy, the relationship between industry 

and academia, the scientific labor market, and the perceived deficit in the relevance of social sciences and 

humanities research. To understand this heterogeneity, we model scientists as publication-maximizing 

agents, identifying two distinct organizational patterns that are optimal under different parameters. When 

the net productivity of research staff (e.g., PhD students and postdocs) is positive, the funded research 

model with an entrepreneurial scientist and a large team dominates. When the costs of research staff exceed 

their productivity benefits, the hands-on research approach is optimal. The model implies significant 

heterogeneity across the two modes of organizing in research funding, supply of scientific workforce, team 

size, publication output, and stratification patterns over time. Exploratory empirical analysis finds 

consistent patterns of time allocation and publication in a prior survey of faculty in U.S. universities. Using 

data from an original survey, we also find causal effects consistent with the model’s prediction on how 

negative shocks to research staff—due to visa or health problems, for example—differentially impact 

research output under the two modes of organization. 

Introduction 

Access to academic research plays a significant role in shaping firms’ competitive advantage. Scientific 

research can help firms overcome technological barriers, improve their R&D efficiency, and identify new 

market opportunities (McMillan et al. 2000). Large American corporations have increasingly stepped back 

from investing directly in basic research and rely more on academia as the source of basic science for their 

R&D activities (Arora et al. 2015). Scientific research, largely done in academia, also spurs economic 
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growth and produces considerable societal benefits (Mokyr 2002; Narin et al. 1997; Polanyi 1962; Romer 

1990; Rosenberg 1974). Accordingly, a large stream of research has explored the incentive structures and 

social norms of academia, depicting it as an institution in which scientists typically race for scientific credit, 

assess each other through peer review, and follow the academic norms of openness, universalism, 

originality, and skepticism (Dasgupta and David 1994; Diamond 2005; McPherson and Schapiro 1999; 

Merton and Zuckerman 1973). This picture of academia, largely based on American scientific enterprise, 

has provided valuable insight for firms and policy makers seeking to incentivize and steer academic 

research (Dasgupta and David 1994).  

However, despite the fundamental interest of organizational scholars in the sources of heterogeneity 

across organizations, they have uncharacteristically overlooked the sources of heterogeneity across 

academic fields. Academia is theoretically understood as one important organizational form with a set of 

shared incentives and organizational structures. In fact, what we know of scientists’ behavior in academia 

comes largely from studies focused on life sciences or engineering (e.g. Azoulay et al. 2009; Azoulay et al. 

2011; Fox 2005; Li and Agha 2015; Vakili and McGahan 2016; Vakili et al. 2015). Yet there is ample 

evidence of heterogeneity in academia even within the U.S. research universities (Becher 1994; Moses 

1990). Consider, for example, two star scientists at a top U.S. research university. The first, a Nobel laureate 

economist, typically works alone or with a handful of senior collaborators, rarely seeks research funding, 

and only occasionally works with PhD students. He has published over 60 articles, mostly solo or with one 

co-author, with over 12,000 citations and an H-index of 33. The second, a biological engineer, runs a 1,300-

square-meter lab employing over 80 people, brings in millions of dollars of funding each year to support 

this lab, and has published over 1,400 papers—with hundreds of co-authors—earning over 138,000 

citations and an H-index of 183. He is also named on more than 1,200 patents licensed to over 300 firms. 

Such significant differences across fields, not only in output but also in inputs and organization, are the 

norm rather than the exception. Table 1 provides some examples of this heterogeneity, based on data 

obtained from Virginia Tech between 2011 and 2013. While a typical scientist in the physical sciences, 

engineering, and life sciences produced more than two papers per year, a typical social scientist produced 
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one, and the scientist in humanities only half that.1 Similarly, the average number of PhD students and 

senior research staff per faculty member ranged from 3.04 in engineering to about 0.51 in management 

(with a maximum of 7.4 in biomedical engineering). Furthermore, a typical faculty member in engineering 

or life sciences brings in, on average, more than 10 times the funding of her counterpart in the humanities 

or management. Similarly, large variations are also observable in national data across more aggregate 

categories and diverse institutions (see Table S1 in Online Appendix A for details). 

--Insert Table 1 around here-- 

Given such variance, our understanding of research processes and outcomes based on studies of 

life sciences or engineering may leave us uninformed about much of the scientific community. In turn, 

implications and policies based on such studies may not apply to other areas of science. In this paper we 

develop a formal theoretical model to partially explain the observed heterogeneity in research processes 

and outcomes across academic fields and scientists in the U.S. research universities. We then empirically 

explore some of our model’s predictions and discuss the practical and policy implications.  

One may intuitively expect a continuum of organizational patterns when it comes to scientists’ use 

of research teams and external research funding. However, a simple model conceptualizing academic 

scientists as publication-maximizing agents shows that optimal organizational forms may bifurcate to 

distinct alternatives. When net productivity of research staff—that is, their research output minus the 

opportunity cost of raising funds to support, train, and advise them—is positive, the funded research model 

dominates. The scientist acts as team manager and entrepreneur, obtaining funding to sustain a sizable 

research team. Scientists using the funded research model often do not execute the actual research but rather 

oversee those who do. This model leads to a large supply of scientific workforce per scientist, large research 

teams, and high demand for external funding. On the other hand, when the research staffs’ costs exceed 

their productivity benefits, the hands-on research model dominates. The scientist is highly engaged in 

                                                           
1 Effort required for a single publication varies by field, and differences in the number of publications do not imply 

proportional differences in faculty productivity across departments. In fact, our model does not rely on any potential 

productivity differences to explain the large heterogeneity observed in the number of publications per faculty member.  
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executing a research project, trains fewer graduate students and postdocs, works in smaller teams, and 

demands less funding. In fields where the hands-on research model dominates, publications per scientist 

are fewer than in fields where the funded model is optimal.  

We use our model to generate a series of testable hypotheses and explore them using two data 

sources. Analyzing data from a national survey of U.S. university faculty, we find two patterns consistent 

with our model predictions. First, whether spending time interacting with students contributes to a 

scientist’s publication output is contingent on having funding. Those who have funding end up benefiting 

from student interaction; those who don’t will not. Second, the extent of this benefit is contingent on the 

viability of the funded model in a given research domain. In domains in which the funded model is common, 

scientists benefit more from interacting with students. 

Second, we use an original survey of scientists at two major universities to track the causal impact 

of unexpected losses of research staff (e.g., due to visa or health problems) on a scientist’s research 

productivity. Consistent with our model predictions, such incidents lower the scientist’s quality-adjusted 

publication productivity if she uses the funded research model, but not if she uses the hands-on model.  

Focusing on the individual scientists’ optimal time allocation problem, our model complements 

other accounts of scientific enterprise that explore historical path dependencies, the cumulative nature of 

knowledge, and institutional logics; and in doing so it offers novel implications for innovation research. 

Our model can complement current theories that explain the growing dominance of teams in knowledge 

creation (Agrawal et al. 2016; Jones 2009). Prior literature underlines the increasing cost of reaching the 

knowledge frontier as an important factor contributing to greater specialization and hence to more 

teamwork being needed to advance that frontier. The basic principles of our model combined with the 

reinforcing mechanisms particularly found in funded research can explain the differential in team size and 

productivity between areas that use the funded research model (such as engineering and life sciences) and 

those that use the hands-on research model (such as humanities and management). Moreover, the same 

reinforcing dynamics in the funded research model can also explain the concentration of research impact in 

a few top research institutes. Finally, our model’s mechanisms interact with the plurality of theoretical 
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views in hands-on domains or with paradigmatic consensus in funded domains to reinforce each other over 

time, further sustaining the observed heterogeneity.  

Multiple implications for firm strategy and policy follow. For example, where funded model 

dominates, funding supply can be used as a lever to influence the direction of research. In contrast project 

choice of hands-on researchers is not very sensitive to funding. The former areas enable firms to partially 

relegate their research activities to academia, the latter do not. Moreover, by endogenizing the demand for 

external funding, our model can provide an additional explanation for why research in funded areas is 

perceived to be more aligned with the needs of industry and society than research in areas using the hands-

on model. This mechanism informs a long-standing concern among management scholars about the impact 

of their research (Barley et al. 1988; Hambrick 1994; Markides 2007; Mintzberg 2004; Vermeulen 2007). 

Our findings also suggest that whereas scientists in funded fields are typically selected into their position 

based on their research skills, they require managerial skills to thrive as group heads. Investment in the 

development of scientists’ managerial skills can thus improve their long-term productivity and success. 

Finally, our model might explain a puzzling imbalance: despite a more than 30-fold increase in research 

funding in the United States over the last 60 years, demand has grown even more quickly. This could be a 

natural outcome of the funded model, in which PhD students, having been trained by supplied funding, go 

on to demand funding for their own research. This mechanism might also contribute to the imbalance 

between supply and demand for PhD graduates in the labor market for scientists.  

A Model of Publication-Maximizing Scientists 

In this section, we develop a parsimonious model of time allocation by an academic scientist who aims to 

maximize her publication output. In practice, scientists’ time allocation is motivated by a host of factors, 

including institutional pressures, social norms, habits, and career motivations, among others. While other 

drivers are certainly important, we simplify by assuming that the main goal of academic scientists is to 

generate scientific insights, typically measured in publication units. This assumption is in line with prior 

work showing that a scientist’s impact and reputation depend on his or her publication record (Bensman 
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1982; Merton 1968; Merton 1973), while a university’s reputation is determined by its faculty’s research 

productivity (Porter and Toutkoushian 2006). Therefore, promotion, tenure, and salary at research 

universities are based largely on publication productivity (Fairweather 1993; Kasten 1984; Tien 2007). We 

use the maximization of research output as the organizing principle to model scientists’ time allocation 

across different activities.  

In their race for priority, scientists openly share their findings through journal articles, books, 

patents, and other artifacts. Different output types are valued differently across different fields (Huang and 

Chang 2008); overall, however, publications are the primary output of academic research (Fox 1983; Fox 

and Mohapatra 2007; Merton 1973). Publication quality is another significant factor in evaluating research 

output, although measuring it is complex (van Raan 1988). Our model defines research output in terms of 

an effort-adjusted unit of publication, for example an article in a leading journal. Other types of output, 

such as books, could be expressed in terms of this unit, based on the amount of research time they require 

from a scientist compared with the time required to research and publish a unit output.  

We group an academic scientist’s various activities into the following categories.  

Research includes all activities that contribute to the design, production, and dissemination of 

scientific knowledge and artifacts. Here we distinguish between research activities that only the lead 

scientist can engage in (which we label “research design”) and tasks that could be undertaken by both the 

scientist and her research staff (which we label “research execution”). The latter include surveys, 

mathematical calculations, computer coding, working with laboratory animals, conducting experiments, 

writing journal articles, presenting research results, installing and maintaining the research equipment, and 

other tasks. 

Teaching includes all activities focused on helping others acquire knowledge and gain academic 

credentials but which do not primarily contribute to the scientist’s research program. Examples include 

lecturing in class, preparing for the lectures, grading, holding office hours, and offering academic advice to 

undergraduate students.  
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Advising includes all interactions intended to train students, postdocs, and research staff or to 

manage the research projects and teams of researchers in the research group the scientist leads.  

Raising funds includes all the activities related to acquiring the funds needed to sustain the 

scientist’s research program, for example meeting with research sponsors, communicating within a proposal 

team, and writing a research proposal.  

Service includes all the activities that do not fall into the previous categories, such as administrative 

tasks and work on committees not related to research and funding.  

This section focuses on analytically modeling the trade-offs that a scientist faces in allocating her 

time across the activities just described. For the sake of simplicity, we assume that teaching and service 

activities make a limited contribution to research output and are exogenously imposed on the scientist by 

her institution (institutional effect). Moreover, since scientists have to spend the requisite time on “research 

design” (research activities they cannot delegate to team members), the time corresponding to research 

design can be excluded from their allocation problem (see Appendix B2 for explicit treatment of research 

design). Given these assumptions, consider a single scientist (and her research group) distributing her 

flexible time (time not dedicated to research design, teaching, and service) between research execution, 

raising funds, and advising. She is assumed to allocate her effort between these activities to maximize her 

quality-adjusted publication rate.  

The time allocated to different activities depends on how the scientist structures her research group, 

that is, how much equipment and how many research staff (typically PhD students and postdocs) are 

employed. Different research domains require different physical artifacts and experimental setups for 

research. Research equipment influences this analysis in two ways: first, because equipment enables 

research, the amount of equipment influences research output. Second, a scientist must spend time raising 

the funds needed to acquire and maintain the research equipment. Specifically, calling the level of 

equipment E (upper case is used for variables that a scientist can choose, and lower case is used for model 

parameters) and the fraction of the scientist’s total time required to raise funds for a single unit of equipment 
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te, the scientist should spend a fraction of her time amounting to Ete on raising funds for her research group’s 

equipment.  

On the other hand, the research staff require a scientist’s time for supervision and advising, as well 

as for raising funds to pay them if they are not funded by external scholarships or salaried positions (we 

return to this possibility later in the analysis). Consider a research group consisting of P research staff, 

besides the scientist. Call the fraction of the scientist’s time needed for raising funds to sustain one staff 

member tf and the fraction of time to advise and manage one staff member ta. The time spent on management 

and fundraising related to the staff is P(tf+ta).  

The scientist spends a fraction, Tr, of her time on research. As a result, three interrelated decisions 

shape the scientist’s choices: (a) the number of research staff she should employ (P), (b) how much research 

equipment she should acquire and maintain (E), and (c) the fraction of her time she should spend on research 

execution (Tr). 

These decisions are interrelated because the total time available to the scientist is limited. So the 

amount of equipment and the number of staff she can have are constrained by the time she has available to 

sustain and manage them. Normalizing the total flexible time available to the scientist to 1, we have: 

1 eafr EtPtPtT   0 ≤ 𝑇𝑟 , 𝑡𝑓 , 𝑡𝑎 , 𝑡𝑒 ≤ 1  (1) 

Publication output depends on the research execution time spent by the scientist (Tr) and other 

members of the group, weighted by their productivity (es for the scientist and esrp for other group members, 

where rp is the productivity of research staff relative to that of the scientist). Research output also depends 

on the availability of proper research equipment (E). The combination of these two factors (research labor 

and equipment) is assumed to produce research output (O), based on the constant returns to scale Cobb-

Douglas production function. The scientist is typically a co-author on all publications coming from her 

research group.2 Therefore, the total publication output, O, for the scientist can be stated as: 

                                                           
2 For simplicity, this analysis assumes equal credit to the scientist regardless of the number of co-authors. Given the 

evidence on limited discounting of credit (i.e., proportional to the inverse of the logarithm of the number of co-authors 

(Bikard et al. 2015)), this assumption does not change the results qualitatively. Moreover, the hands-on research model 

does not lead only to solo-authored papers. In practice, horizontal collaboration among peers leverages the unique 
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  1)( EPreTeO psrs       (2) 

where α, between 0 and 1, represents the significance of human labor in producing research output, relative 

to the significance of technology.  

In solving the resulting time allocation problem, the number of PhDs and postdocs (P), the amount 

of equipment (E), and the time spent on research execution (Tr) are chosen to maximize research output. 

Formally: 

  1

,,
)(: EPreTeMaximize psrs

EPTr      (3) 

Subject to: 1 eafr EtPtPtT ; 10  rT ; EP,0   

Solving this problem (see Appendix B1), optimum research equipment is found to be

etE /)1(  . With respect to research time and the size of the team, two significantly different 

possibilities emerge depending on the net productivity of research staff (rp-ta-tf). Staff’s net productivity 

compares the publication productivity benefits of a typical PhD student or postdoc (rp) against their costs 

to the scientist in raising funds for the staff (tf) and advising, training, and managing the staff (ta). First, if 

research staff are productive enough ( pfa rtt  ), then the scientist spends her remaining time (after 

allocating what is needed to acquire funding for equipment) raising funds and managing the largest possible 

research group ))/(( fa ttP  , spending no time on research execution tasks. In such a setting the 

scientist’s role is closer to that of an entrepreneur: she brings in money to sustain the research group, 

manages a relatively large research team, and participates more in the research design than in the execution. 

When this model dominates, publications are more numerous and a larger number of co-authors are 

typically listed than would be the case if the scientist had spent most of her time doing the research without 

a team. We call this mode of operation the “funded” research model.  

                                                           
capabilities and assets of each scientist and is common among those using the hands-on research model. Those 

horizontal collaborations do not change the core mechanisms in our model and thus are not included explicitly. 
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In contrast, if research staff are not productive enough to justify their costs ( pfa rtt  ), then the 

scientist will prefer to have no staff and instead spend much of her flexible time executing the research 

herself, with the remaining time spent raising funds for the required equipment. We call this mode of 

operation the “hands-on” research model. Where this model dominates, the most successful scientists have 

little demand for external funding, they fund few PhD students or postdocs, fewer authors are listed on their 

publications, and they are often doing the day-to-day research tasks.  

Determinants of Dominant Research Model 

The results suggest that (a) the fractional advising (ta) and fundraising (tf) times for sustaining a staff 

member and (b) his productivity relative to the scientist ( pr ) explain significant differences in the size of 

the scientist’s research group and her allocation of time to conducting research versus raising funds and 

training the research team. These three parameters vary for each scientist and depend on (a) the nature of 

research (field effect), (b) the institutional arrangement in which a faculty works (institution effect), and (c) 

the qualities and preferences of the scientist and her team members (individual effects). Given the potential 

importance of field effects (for which we provide evidence in the empirical section), our model predicts 

that scientists in the same field would on average follow the same research model (i.e., funded vs. hands-

on). Meanwhile, institution and individual effects can create heterogeneity in the adopted research model 

within the same field, the same institution, and over time.  

The hands-on model dominates when a typical PhD student/postdoc cannot produce the equivalent 

of the scientist’s research publication output during the time spent on raising funds for, and advising, that 

student/postdoc. Multiple factors could contribute to this. For example, staff productivity relative to 

scientist (rp) may be small when learning the research concepts is time-consuming, delaying the time at 

which PhD students become productive (e.g., theoretical physics and mathematics, where reaching the 

conceptual frontiers requires sequences of multiple graduate courses), when scholarly writing is complex 

and calls for years of apprenticeship (e.g., sociology), or when there are few venues for raising research 
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funds (e.g., anthropology). Such field effects often have a strong impact on the choice of research model 

and may thus provide a rational impetus for homogeneity in organizational practices among scientists in 

the same field.  

Institution effects can also matter, for example when faculty at famous universities can attract very 

talented PhD students, increasing the rp, and thus the viability of the funded model. Some universities offer 

generous internal funding packages to their scientists, which by reducing tf, can tip the scale in favor of the 

funded model. Finally, individual effects can also be consequential. For example, very talented scientists 

may prefer the hands-on model (since they are relatively more productive in doing the research than their 

staff, thus reducing rp). On the other hand, scientists with strong interpersonal and managerial skills may 

gravitate toward the funded model. Some may even create additional levels of management hierarchy in 

which postdoc researchers are hired to conduct the day-to-day training and supervision of PhD students, 

reducing ta and making the funded model more attractive for their own group. 

Extensions and Robustness 

Focusing on a stylized representation of individual scientists’ choices, our model excludes a host of relevant 

social and institutional factors and makes simplifying assumptions about the motivations and rationality of 

scientists. Before reporting empirical results, we explore three extensions of this model to provide a more 

nuanced view.  

Heterogeneous Research Tasks. We modeled a single “research” activity, but in practice research 

tasks span a wide range, from designing studies to lab work to computer programming to data cleanup. 

Relative productivity of research staff may vary across different tasks. For example, staff may be inefficient 

in research design but be as productive as the scientist in data cleanup. Our model can capture such 

heterogeneity with a more complex output function with multiple types of research tasks, each with a 

distinct rp value. We solve one such variant in which the research design (assumed to have an rp of zero) is 

explicitly incorporated into the research output function and distinguished from research execution (see 

Appendix B2 for details). The results are very similar to the base model: the scientist is required to spend a 
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fixed fraction of her time on research design, but otherwise the time allocation follows the baseline model. 

Extensions in which multiple task types are included (not formally modeled here) may lead to intermediate 

solutions between hands-on and funded modes in which research staff are worthwhile for a subset of tasks, 

but not others, and thus the scientist is partially involved in doing the research while supporting a smaller 

team. 

Institutional Support and Internal Funding. In our baseline model, faculty are required to secure 

external funding to maintain a research team. In practice, host institutions may subsidize the scientist’s 

fundraising overhead by offering salaried support staff, start-up funds, and teaching assistantships that, 

besides external research funding, could be used to recruit research staff. For example, principal 

investigators (PIs) at the National Institutes of Health are often provided with a number of research staff 

for whom the PIs do not secure funding. Top research universities may also offer multiple person-years of 

staff funding as part of their start-up package for new faculty. Similar arrangements may be even more 

common outside of the United States and can be explicitly incorporated in our model (see Appendix B3 for 

details). This consideration leads to an additional equilibrium in which the scientist uses only a few research 

staff who are funded through institutional support but does not seek external funding for additional staff. 

This intermediate mode dominates when such internal funding is available and staff are net productive 

when considering only their advising and management costs but become a net loss if the scientist had to 

secure external funding for them.  

Behavioral Alternatives to Publication-Maximization: Effects of Norms and Social Learning. 

Publication-maximization, the organizing logic of our model, is a behaviorally strong assumption: even if 

incentivized based on publications, how would a scientist know the parameters (e.g., ta, tf, rp) that apply to 

them? And if aware of the parameters, do scientists really solve an optimization problem? What about the 

impact of institutional norms and social influence on their time allocation decisions? Indeed, publication-

maximization in our model is not intended to provide a behaviorally realistic description of scientists’ actual 

decision processes; rather, it is an analytical path to capturing forces that promote publications in a research 

community. The actual discovery and diffusion of those practices likely span multilevel dynamics of 
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individual exploration, social influence, and institutionalization. Here we show how, despite its simplicity, 

our model can be useful for understanding the direction toward which those more intricate dynamics evolve.  

Specifically, we build an agent-based model (see Appendix C for details) of a community of 

scientists who are exposed to the same research output function as our baseline model but are otherwise 

ignorant of the parameters of the model (e.g., ta, tf, rp, which are identical across scientists) and don’t 

actively maximize their publications. Instead, these scientists are prone to adopting community norms (in 

deciding the number of staff (P), research time (Tr), and equipment (E)) when their output is below average 

and exploring modest changes in their practice when they are outperforming the average member in the 

community but lagging the best performers. In other words, scientists here are not publication-maximizing; 

rather, they are influenced by what others do and also experiment to organize their work more productively. 

Simulations of this community (reported in Appendix C) show that they will, over time, converge to the 

neighborhood of organizational forms predicted by our analytical model. The speed of this convergence, 

potential bias, and level of heterogeneity in community practices over time depend on the learning and 

exploration assumptions embedded in the model. Nevertheless, local adaptation and vicarious learning can 

provide a behaviorally plausible path for identification and diffusion of organizational forms indicated by 

our simple publication-maximizing model, a result resonating with a long tradition of research in 

organizational learning (Argote 2012; Terlaak and Gong 2008). 

Empirical Exploration 

In the next two sections, we provide empirical evidence for our theoretical model. First, we generate 

empirically testable predictions based on the model. We test them using two samples. To complement our 

empirical tests, we provide additional statistical evidence for some of the model’s assumptions.  

Empirical Predictions 

There are two sets of empirical predictions we can make based on our model: equilibrium outcomes and 

causal relationships. The first two predictions describe the bifurcated relationship between research inputs 
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and outputs in equilibrium. These predictions are not causal and simply explain what we should expect in 

each model of team organization. The third prediction pertains to the causal relationship between changes 

in one of the inputs (research staff) and changes in research output.  

A scientist’s time spent on advising research staff has different repercussions depending on whether 

she uses the funded model or not. In the funded model, time spent on advising research staff increases 

research output. Mathematically, the partial derivative of output with respect to time spent by the scientist 

in advising and managing the research staff (Ta=Pta) is always positive in the funded model (

 
 

 1)
1

()(/
eaa

ps

a
tTt

re
TO ≥0 for 1≥α≥0). In the hands-on model, the time spent on research staff has 

no effect on research output. This has two empirical implications. First, if we assume that using the funded 

model is positively correlated with funding at the individual level, we expect the impact of time spent with 

research staff on research output to be fully moderated by having funding. 

Prediction 1: The positive effect of time spent with research staff on research output is fully moderated by 

having funding.  

Second, even conditional on having funding, we expect the positive effect of time spent with 

research staff on research output to be stronger in domains in which, due to the field effect, the funded 

model strongly dominates. In domains where the hands-on model dominates, faculty may still acquire 

funding. They may seek funding for reasons other than publication-maximization or because of individual 

effects that justify the funded model for a few scientists despite field effects pointing to the hands-on model. 

Thus the effect of interaction between time spent with research staff and funding on research output would 

be weaker.  
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Prediction 2: The effect of interaction between funding and time spent with research staff on research 

output is larger in domains in which the funded model dominates than in domains in which the hands-on 

model is more common.  

Finally, we expect that an exogenous change in the number of research staff will directly affect a 

scientist’s research output only if she uses the funded model. For faculty using the funded model, the partial 

derivative of output with respect to number of staff is 
 

 
 1)

1
()(/

e

ps
Pt

rePO , which is always 

positive. It is zero, however, for scientists using the hands-on model.  

Prediction 3: A negative (positive) exogenous shock to research staff would have a measurable negative 

(positive) impact on the productivity of scientists who use the funded model but would have little impact on 

those using the hands-on approach.  

Empirical Evidence 

We first provide empirical evidence for Predictions 1 and 2 using a longitudinal, cross-sectional survey of 

research-oriented faculty at a large number of U.S. universities. We then test Prediction 3 using data from 

a survey we administered at two U.S. research universities, MIT and Virginia Tech, combined with 

publication data extracted from the Scopus database.  

Equilibrium Results. The first set of data to test Predictions 1 and 2 comes from six Higher 

Education Research Institute (HERI) Faculty Surveys administered in 1989, 1992, 1995, 1998, 2001, and 

2010. We excluded the 2004 and 2007 survey waves because they did not include any questions on research 

funding. The survey asks faculty about their appointment and rank, department, highest degree held, major, 

tenure status, demographic information (including gender, education, citizenship status, language, and age), 

salary, research output, whether they have received funding for their research, and weekly time allocation 

to teaching, research, advising/counseling students, and administrative tasks, among other topics. The 
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aggregated sample of surveys contains data from 385,414 faculty working at 1,261 colleges and universities 

in the United States (see https://heri.ucla.edu/heri-faculty-survey/ for details). To focus on research-oriented 

faculty, we include in our analysis only assistant, associate, and full professors working at U.S. research 

universities. Our final sample includes 116,067 faculty working at 194 U.S. universities. The level of 

analysis in all regressions is the faculty-year.  

We use the number of publications in the two years prior to each survey wave as the main indicator 

of faculty research output—our main dependent variable. Our main independent variables are the average 

number of hours a faculty member allocated to advising and counseling students and whether she received 

any funding for her research in the two years prior to each survey. Although HERI Faculty Surveys offer 

one of the few datasets that include scientists’ time allocation, some of their measures are imperfect matches 

for variables in our theoretical model. The data do not include the time that each faculty member spends 

supervising research staff. Instead, it includes the “time spent on advising and/or counseling students.” 

However, we expect a positive correlation between these two variables. We also do not observe the amount 

of funding that each faculty member has received. Instead, we rely on whether they received any research 

funding in the two years prior to each survey wave. While this measure is far from perfect, we expect it to 

capture the basic variance in funding per faculty member across different departments. 

We further control for the number of hours per week that a faculty member allocated to research, 

to teaching, to committee work and meetings, and to other administrative tasks; their gender; whether they 

had tenure; and whether they were U.S. citizens at the time of the survey. We also include a set of year 

dummies to control for the macro factors (such as a financial crisis) that might have affected the research 

productivity of all faculty members in a given survey year. Finally, we include a full set of university 

dummies to control for the idiosyncratic characteristics of each institution that might influence the research 

productivity of its faculty across all departments.  

Table 2 presents summary statistics for our sample. The faculty in our sample produced on average 

about five publications in the two years prior to each survey. Approximately 68% of them received funding 

during that period. On average, they spent about 11.6 hours per week on research and scholarly writing, 
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15.6 hours on teaching, 4.2 hours on advising and/or counseling students, 4.4 hours on committee work and 

meetings, and 4.8 hours on other administrative tasks. About 30% were female, 92% were U.S. citizens, 

and 70% had tenure. Their average salary was approximately $78,000 (2009 dollars), their average age was 

about 47, and they had an average of 19 years of experience. 

--Table 2 about here-- 

Table 2 also breaks down the summary statistics across seven major areas: engineering, life 

sciences, physical sciences, psychology, social sciences (other than psychology), humanities, and 

management. Consistent with National Science Foundation (NSF) reporting practice, we separate 

psychology from other social sciences. This separation is also indicated in the data from the Virginia Tech 

(in Table 1) and national surveys3 that suggest that faculty in psychology on average supervise larger groups 

of research staff and receive more funding for their research than faculty in the other social sciences do. 

Consistent with the figures reported for Virginia Tech in Table 1, faculty in engineering, life sciences, and 

physical sciences on average produced more publications than faculty in social sciences, humanities, and 

management. Moreover, a higher proportion of the former group, as well as the psychology faculty, reported 

having received research funding in the previous two years. They also spent on average more time advising 

and/or counseling students. The differences in these three variables between the faculty in engineering, life 

sciences, physical sciences, and psychology (except for publications) and the faculty in (other) social 

sciences, humanities, and management are all significant at the 99% level (using a t-test comparison of 

means). 

Together, the summary statistics suggest a positive correlation between the number of publications, 

the percentage of faculty who received funding, and the number of hours per week spent 

advising/counseling students across these six areas. The three graphs in Figure 1 illustrate the pairwise 

correlations between these three variables. These graphs suggest a shift from the funded to the hands-on 

                                                           
3 In 2010, for example, 36.5% of psychology faculty had federal funding compared with 20.6% in the other social 

sciences, and 0.17 vs. 0.11 doctorate degrees were granted, respectively, per full-time academic faculty member 

(National Science Foundation 2015b).  
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research model as we move from engineering and life sciences to humanities and management. However, 

the summary statistics cannot reveal the more nuanced interactions between funding, time spent on 

advising/counseling students, and research output as modeled in our theory section.  

Next, we test the first two predictions using econometric analysis. We use the following linear 

ordinary least squares (OLS) regression with robust standard errors to estimate the association between 

funding, time allocated to advising/counseling students, and research output: 

𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ 𝑂𝑢𝑡𝑝𝑢𝑡𝑖𝑡 = 𝛽0 + 𝛽1. 𝐹𝑢𝑛𝑑𝑒𝑑𝑖𝑡 + 𝛽2. 𝐴𝑑𝑣𝑖𝑠𝑖𝑛𝑔_𝑇𝑖𝑚𝑒𝑖𝑡 + 𝛽3. 𝐴𝑑𝑣𝑖𝑠𝑖𝑛𝑔_𝑇𝑖𝑚𝑒𝑖𝑡 × 𝐹𝑢𝑛𝑑𝑒𝑑𝑖𝑡 +  𝜃. 𝑋𝑖𝑡 +

𝑌𝑒𝑎𝑟𝑡 +  𝛼 + 𝜀𝑖        (4) 

where 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ 𝑂𝑢𝑡𝑝𝑢𝑡𝑖 is the number of publications by faculty member 𝑖 in the two years prior to each 

survey, as reported in the survey administered in year 𝑡; 𝐴𝑑𝑣𝑖𝑠𝑖𝑛𝑔_𝑇𝑖𝑚𝑒𝑖𝑡 is the number of hours per week 

spent by 𝑖 on advising and/or counseling students, reported in year 𝑡; 𝐹𝑢𝑛𝑑𝑒𝑑𝑖𝑡 is equal to 1 if faculty 

member 𝑖 indicated that she had received funding in year 𝑡, and 0 otherwise; 𝑋𝑖𝑡 contains the set of control 

variables and includes 𝑖’s field, institution, gender, tenure status, citizenship status, salary, age, experience 

(in years since last degree), and number of hours per week spent on research, committee work, and 

meetings, and other administrative duties; and 𝑌𝑒𝑎𝑟𝑡 includes the set of year dummies corresponding to 

each survey wave.  

Model 1 of Table 3 shows the estimation results without the interaction between funding and the 

time spent on advising/counseling. Following our theoretical model, we expect both 𝛽1 and 𝛽2 to be positive 

and significant. Moreover, we expect 𝛽2 to be positive and significant only in areas that use the funded 

research model and to be smaller and insignificant in areas that use the hands-on research model. We add 

the interaction term in Model 2. After controlling for the moderating role of funding, we expect 𝛽2 to turn 

insignificant and the positive effect of time spent on advising/counseling students on research output to be 

largely captured by 𝛽3 (Prediction 1).  

The results in Model 1 show a significant positive relationship between both funding and the time 

that a faculty member spends on advising/counseling students and her research output. Having funding is 

associated with 1.5 more publications in a two-year window, a 30% increase over the baseline. Moreover, 
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an extra hour spent on advising/counseling per week is associated with about 0.1 more publications in a 

two-year window. Put differently, a one-standard-deviation increase in time spent advising/counseling is 

associated with about 0.2 extra publications per year. Not surprisingly, the time spent on research is also 

strongly and positively correlated with the two-year research output. A one-standard-deviation increase in 

time spent on research leads to about 0.5 additional publications per year. In contrast, the number of hours 

spent on teaching and administrative activities is negatively and significantly associated with research 

productivity. The impact of time spent on committee work and meetings is not significant. Moreover, 

female faculty produce on average 0.16 fewer publications per year, which is consistent with previous 

findings in the literature and may be due to family demands or to sorting into different types of projects 

(Fox 2005). U.S. citizens also produced significantly fewer publications than did non-citizens working in 

the United States, which might be the result of lower incentives for U.S. citizens, to sorting into different 

departments and research trajectories, and/or to selection on quality (Hur et al. 2015). A higher salary is on 

average associated with greater research productivity. Tenured faculty and more experienced faculty are on 

average significantly more productive, but age is negatively associated with research output. The estimates 

associated with the control variables are in line with prior findings and anecdotal observations (Fox 1983).  

--Table 3 about here-- 

Results in column 2 are for the interaction model. The coefficient of time spent advising/counseling 

students is now close to 0 and is insignificant. Instead, the positive significant coefficient of the interaction 

term suggests that there is a positive effect of advising/counseling on research output only for faculty who 

received funding prior to the survey. The estimates are broadly consistent with Prediction 1. However, the 

aggregation of data across all areas masks the heterogeneity in the modes of research across departments 

(hands-on or funded). In other words, it is not clear whether the positive interaction effect is driven by 

faculty in areas that use the funded research model (our Prediction 2) or is instead driven homogenously by 

funded faculty across all departments.  

Table 4 repeats the interaction model for each major area in the sample separately. The effects of 

control variables on research output are largely similar across all the areas and in line with those reported 
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in Table 3. Consistent with Prediction 1, in the absence of funding there is little relationship between 

spending time on advising/counseling students and research output. The only exception is in the physical 

sciences, where spending time on advising/counseling in the absence of funding is still positively and 

significantly associated with research productivity.4 When interacted with funding, the estimated effect of 

spending time on advising/counseling is large, positive, and significant in engineering, life sciences, 

physical sciences, and psychology and is negligible and insignificant in (other) social sciences, humanities, 

and management. These findings are consistent with Prediction 2. Figures in Appendix D are a graphical 

summary of interaction effects across fields. The regression results are completely robust to a split-sample 

analysis, based on whether faculty received funding, within each department. 

In short, faculty in engineering, life sciences, physical sciences, and psychology largely use the 

funded research model, and those in (other) social sciences, humanities, and management largely use the 

hands-on research model. These findings support Predictions 1 and 2 and highlight the different roles of 

funding and research staff in the funded and hands-on research models.  

--Table 4 about here– 

Finally, the HERI data provide an opportunity to better explore the relative contribution of field, 

institution, and individual factors to the observed variance in the organization of scientific work across 

fields. In introducing the model we distinguished between these factors and discussed how each can impact 

model parameters (such as relative productivity of staff and costs of advising and fundraising). Here we 

conduct variance decomposition analyses on HERI data, partitioning the observed standard deviation in 

publications, funding, and student advising time between field, institution, and other factors (residual). In 

the absence of panel data, the residual component will combine the contribution of individual effects with 

a host of stochastic or unobserved factors, and thus it is bound to have a larger effect. Nevertheless, across 

different specifications, field and institutions explain between 9.5% and 21.3% of the standard deviation of 

                                                           
4 Further analysis shows that the effect of time spent on students on research output in the physical sciences becomes 

insignificant once we exclude faculty in statistics departments. Our qualitative interviews with statistics faculty in a 

small sample of universities suggest that they can maintain a relatively large number of students without much funding, 

since students usually are supported by doing work for faculty in other departments. 
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each measure of interest (see Online Appendix E for details). Overall, this analysis provides evidence on 

the significant effect of field and institutional factors on the organization and outputs of scientific research 

and provides a bridge between our individual-level model and the multilevel determinants of its parameters.  

Causal Results. We use a different sample to test Prediction 3. The data were collected in two 

steps. First, we sent a survey to all faculty we could identify at MIT (964) and Virginia Tech (1,509), two 

major U.S. research universities. We collected the faculty names, department information, and email 

contacts from department websites and faculty directories. The survey was conducted over four months 

between December 2016 and April 2017. The survey questions are listed in Appendix F. The respondents 

were asked whether they have ever had a graduate student, postdoc, or research staff who had gone 

unexpectedly absent, for example because of visa or health issues. If the respondents answered yes, the 

survey then asked how many times it had happened and asked for more details about each incident. The 

questions included the timing of the incident, the length of the absence, the reason for it, how the student 

was funded, how much research funding the faculty had at the time of the incident, and how many other 

students the faculty member had been advising at the time of the incident. Out of 2,473 inquiries, we 

received 259 responses indicating no incidents, 58 reporting one incident, 30 reporting two, and 15 

reporting three. Of those 103 reporting at least one incident, 83 provided detailed data on at least one 

incident. All incidents had occurred between 1996 and 2016. Since we focus on identifying rare events, we 

do not have a clear measure of true response rate among faculty experiencing at least one incident. 

Nevertheless, our focus here is on the differential effect of unexpected absence of research staff on 

scientists’ productivity between the two research models. While scientists who had experienced a negative 

effect in their productivity might be more likely to report the incidents, we do not expect this bias to be 

systematically different between those who use the funded research model and those who use the hands-on 

model. In fact, such a response bias may lead to an estimated negative effect of staff absence on productivity 

for scientists using the hands-on model, which would work against our theoretical model. As we report 

below, our estimates suggest that staff absences had no significant effect on the research output of scientists 

using the hands-on model.  
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In the second step, we collected from the Scopus database all the publications of each faculty 

member who reported at least one unexpected absence of a research team member. Scopus is one of the 

most comprehensive databases of academic research, covering almost all major domains of knowledge. We 

used the faculty name and institutional affiliation to identify each faculty member on Scopus. For each 

publication, we also collected the number of citations it had received. Following previous research, we use 

the citation impact of each publication to adjust for its quality (Azoulay et al. 2009; Vakili and McGahan 

2016; Vakili et al. 2015).  

After excluding the most recent incidents (the impact of which cannot yet be tracked) and scientists 

with incomplete publication data, the final sample is a panel of 71 scientists reporting a total of 100 

incidents. A typical scientist in our sample has an average of 201.2 citation-weighted publications per year. 

The sample includes 1,752 scientist-year observations. For each scientist, we coded his or her research 

model as either hands-on or funded, based on the department affiliation. Fifty-four departments were 

flagged as affiliated with the funded research model; they produced on average 270.5 citation-weighted 

publications yearly during the sample period. Seventeen were flagged as affiliated with the hands-on 

research model; they produced on average 31.5 citation-weighted publications yearly during the sample 

period. The difference in publication output between the two groups is significant at the 99% level (based 

on t-test analysis). The median scientist assigned to the hands-on model reported having below $50,000 in 

annual funding and fewer than three team members at the time of the absence incident. The median scientist 

assigned to the funded model reported having between $200,000 and $500,000 in funding and six to eight 

team members at the time of the absence incident. Given the larger teams in the funded model, one might 

intuitively have predicted a smaller negative impact of an absence on the productivity of faculty using the 

funded model; after all, they have more people to make up the slack. Our model predicts the opposite: teams 

are larger in the funded model because of the positive net productivity of research staff, and therefore the 

loss of one staff member would have a larger productivity cost for those following the funded model 

compared with the hands-on faculty. Thus this setup provides a rather conservative test for our model.  
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For each scientist, we estimate the impact of the unexpected absence of a student on her research 

output in subsequent years. Each absence incident is coded based on its length, ranging from 0 to 1: 0.25, 

0.5, 0.75, and 1 for the absence lengths of 2 to 4 months, 5 to 8 months, 9 to 12 months, and more than 12 

months, respectively. Based on our interviews with faculty, we assumed that it can take about two years for 

an absence to show its effect on research output. Below, we report the results for a two-year lag between 

the incident and its effect on publication output. The estimates based on a three-year lag are in line with 

those reported here, but the effects are smaller. All estimations have individual and year fixed effects. The 

individual fixed effects control for the time-independent idiosyncratic characteristics of each faculty 

member, such as their innate quality. The time fixed effects control for the macro events that would affect 

the productivity of all faculty in the sample. We also control for the nonlinear effect of experience on 

productivity, using a fifth-degree polynomial function of experience.  

Our estimation method is in principle similar to a difference-in-differences method. For each 

scientist who experienced an absence incident at time t, those who have not experienced an incident by then 

act as controls. We estimate the effect of absence on research output using both conditional fixed-effect 

panel Poisson models and panel OLS with individual fixed effects. In both cases, we use robust standard 

errors. We also report the results using both a split-sample analysis—estimating the effect separately for 

faculty using the hands-on model and the funded model—and an interaction model in which the absence is 

interacted with whether the faculty member uses the funded model.  

Table 5 reports the results. Model 1 shows the estimated impact, based on the OLS model, of the 

unexpected absence of a graduate student or postdoc on the citation-weighted publication output of 

scientists using the funded model. Model 2 shows the same estimated effects for faculty using the hands-

on model. A sudden decline in research staff has a significant, large negative effect on the research output 

of faculty using the funded model. The results suggest that a one-standard-deviation increase in the absence 

of a research staff member is associated with a decline of 31 citation-weighted publications per year for 

 Electronic copy available at: https://ssrn.com/abstract=3084070 



faculty using the funded model.5 Put differently, the unexpected absence of a research staff member for a 

year can lead to a 0.4-standard-deviation decline in citation-weighted output of faculty using the funded 

model. In contrast, the absence of research staff seems to have a very small, positive, and statistically 

insignificant effect on the research output of faculty using the hands-on research model. The estimations 

based on the interaction model in Model 3 are in line with those based on the split-sample analysis. Models 

4 through 6 show the same results based on the panel Poisson estimates. The results are in line with those 

reported in Models 1 through 3, suggesting that the unexpected absence of research staff has a negative 

effect on research output for faculty using the funded model but little effect for those using the hands-on 

model. Overall, the results confirm Prediction 3.  

--Table 5 about here-- 

Discussion and Conclusion 

Using a parsimonious model, we showed that the variance in the net productivity of research staff—that is, 

their productivity relative to the focal scientist minus the opportunity costs to the scientist of advising and 

of raising funds for the staff—brings about two different organizations for scientific research. The hands-

on research model dominates where research staff are less productive or require extensive training and 

supervision or where raising research funds is very time-consuming. This model leads to smaller research 

groups, with the main scientist doing many day-to-day research tasks, and to limited demand for research 

funding. In contrast, where PhD students and postdocs could be net contributors, the most successful 

scientists (in terms of publication) have large teams and spend most of their time securing research funding. 

We explored some empirical implications of this model using survey data and provided exploratory 

evidence in support of the analytical model.  

                                                           
5 Note that faculty who use the funded model in the sample produced on average 270 citation-weighted publications 

per year during the sample period. The standard deviation is also relatively large at 731. While the estimated 

coefficient is large, it is equivalent to 37% of the observed standard deviation in citation-weighted publication output 

of this faculty group.  
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In this section, we discuss the model’s implications for two interrelated sets of considerations. First, 

our model offers a novel vantage point for understanding the organization of science, a topic of theoretical 

and personal interest to scholars of organizations. We discuss how our model can be a starting point in 

examining the economies of scale and scope and dynamics of stratification in research, role of equipment, 

patterns of collaboration, perceived relevance gap, and emergence of paradigmatic consensus. Second, we 

elaborate on some of the practical implications of our model spanning the organization of research outside 

U.S. academia, agenda-setting in research, dynamics of supply and demand in research funding, and labor 

market considerations for PhD graduates.  

Model Extensions and Theoretical Implications 

Our model is relatively parsimonious and could be extended on multiple fronts. In particular, the current 

model is static, predicting the overall organization of research based on fixed parameters for productivity 

and costs of research staff. Some underlying drivers of those parameters may indeed change very slowly. 

For example, the more fundamental features of a knowledge domain, such as paradigmatic consensus (e.g., 

in concepts, tools, and goals of research enterprise), can drive staff productivity and costs. Higher consensus 

increases the modularity of research, which reduces the costs of team-based science (Newman 2004; 

Wuchty et al. 2007) and increases benefits to specialization and the productivity of staff. Paradigmatic 

consensus also reduces writing complexity (e.g., compare the length and complexity of introductions across 

social and natural sciences (Strang and Siler 2015)) and through that increases the productivity of new staff, 

increasing the attractiveness of the funded model. On the other hand, growth in the available stock of 

knowledge (Jones 2009) adds to the cost of reaching the frontiers of knowledge, which reduces the 

productivity of new staff, promoting hands-on research in areas such as theoretical physics and pure 

mathematics.  

Beyond these more immutable features of knowledge domain, there are various economies of scale, 

scope, and learning that can, over time, change the cost and productivity parameters and reinforce a 

scientist’s reliance on the funded research model. Once a scientist trains a group of research staff, she can 
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use them across multiple projects that share similar tasks, which would lower the per-project cost of training 

and managing them. Also, in the funded model, to the extent that research staff can train one another, 

scientists can allocate relatively less time to training and advising per staff person and instead spend more 

time raising funds to support a larger group, which would in turn increase the viability of the funded 

research model in the next period. In addition, scientists involved in raising funds can build their funding 

networks, learn about funding opportunities, and influence funding directions, thus reducing the cost of 

fundraising for themselves and making the funded model more advantageous in the future. Greater reliance 

on the funded research model can also lead to relatively more publications and hence greater reputation, 

which in turn increases the chances of attracting funding and of acquiring the strongest, most productive 

research staff. In fact, in the short run, total capacity for publication in each field is capped by the space in 

the relevant journals. Hence, reinforcing dynamics may increase skewness of publication distribution in a 

zero-sum game. Refinements to our model could also capture how growth in team size increases 

organizational complexity and thus could cap the team size and funding demand before scientist’s time 

becomes a binding constraint.  

Research equipment can also influence these dynamics. At 3% of total academic R&D costs (and 

below 6% in all subfields; see Table S1 (National Science Foundation 2015a)), equipment cost alone cannot 

explain the variations in funding (e.g., those in Tables 1 and S1). However, equipment needs require faculty 

to engage in fundraising, with the aforementioned learning effects. A more subtle impact of equipment is 

on modularizing research tasks into concrete interactions with physical artifacts. This organizing effect 

allows for more efficient division of labor, engages novice research staff (e.g., first-year PhD students) in 

simpler well-defined tasks (e.g., data cleanup), and thus increases the overall productivity of the research 

staff and the viability of the funded model. These synergies between equipment use and use of the funded 

model may lead to significant correlation between them, beyond what is predicted based on equipment costs 

alone. 

Learning and economies of scale and scope are likely less pronounced, though not absent, in areas 

using the hands-on research model. Hence, we expect to see an increase over time in the gap in the team 
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size and research productivity of scientists using the funded model and those using the hands-on model. 

This expectation is consistent with some of the empirical evidence reported by Wuchty, Jones, and Uzzi 

(2007): whereas the average team size in sciences and engineering almost doubled between 1960 and 2000 

(from 1.9 to 3.6), it increased more slowly in the social sciences (from 1.2 to 2) and remained almost 

unchanged in the arts and humanities. According to the knowledge burden theory, as the knowledge frontier 

moves outward, scientists must become more specialized in order to reach it, which in turn increases their 

need to horizontally collaborate with colleagues in order to complement one another’s specialties (to 

compensate for the narrowness of their own expertise) in order to extend the knowledge frontier even further 

(Jones 2009). Our model highlights the organizational choices that regulate vertical collaboration between 

scientists and staff. A combination of these two theories may provide a more complete explanation for the 

heterogeneous rates of increase in team size and productivity across knowledge domains.  

The same reinforcing dynamics can also result in significant stratifications across scientists within 

an area, particularly where the funded research model dominates. The reinforcing mechanisms behind the 

funded research model combined with the competition among scientists to obtain funding and acquire the 

best talent can create a dynamic whereby “the rich get richer”—a few labs at top research universities attract 

much of the available funds and many of the high-quality PhD students and produce much of the high-

impact work. Table 6 shows the standard deviations of research output across scientists in the six main 

areas plus psychology for the first two (aggregated) and the last two (aggregated) surveys in our HERI 

sample. The standard deviations in two-year research output within engineering, life sciences, physical 

sciences, and psychology grew by 31%, 27%, 7%, and 28%, respectively, between the periods 1989–1991 

and 2007–2010, suggesting an increase in the gap between the research outputs of high performers and low 

performers in the field. In contrast, the standard deviations in research output in social sciences (excluding 

psychology), humanities, and management dropped by 11%, 8%, and 17%, respectively, during the same 

period, suggesting a convergence in productivity for scientists in these areas.  

--Table 6 about here-- 
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Our model can also provide a theoretical basis for the differences in perceived relevance gap 

between academia and industry. For example, several management scholars have worried about the 

disconnect between management research and management practice (Barley et al. 1988; Hambrick 1994; 

Markides 2007; Mintzberg 2004; Vermeulen 2007). This perception is not limited to management 

researchers, though. Becher (1994) observes that, unlike those in engineering and natural sciences, 

researchers in social science and the humanities areas—who also use the hands-on research model—

perceive limited connection between their work and the outside world. Our framework provides one 

potential explanation for this perceived gap. In areas using the funded research model, the significant need 

for funding leads to considerable interaction between the scientists, public funding agencies mandated to 

serve the public interest, and industry as a potential source of research grants. Consequently, the research 

questions in these areas are actively aligned with the needs of supporting constituencies, be it industry or 

the public. These relationships would also lead scientists to build capabilities that are in greater demand by 

the research clients, not only because they are engaged in writing grants and justifying the research in terms 

of various benefits for the clients, but also because they have to adopt concepts that the industry or public 

interest audience can relate to. In contrast, the hands-on model’s lower demand for external funding leads 

to fewer such relationships and fewer such attempts to align with external stakeholders. In the absence of 

external feedback, research questions may diverge from the public’s interest, contributing to the perceived 

disconnect in hands-on areas between research and the needs of industry and society.  

Our model also sheds light on the central role of funding in shaping the research portfolio and 

trajectory of scientists in areas using the funded research model. In particular, the rise and fall of particular 

funding opportunities requires scientists to adjust their research portfolios accordingly. Thus, we expect the 

research portfolios of scientists in these areas to be not only more homogenous at any given time but also 

more volatile over time than the research portfolios of hands-on scientists. For the latter, we expect the 

changes in research trajectories to follow more closely the individual scientist’s interests and the socially 

constructed view of the field about what the important questions are at any time. In the absence of the 

homogenizing pressures of external funding in hands-on research areas, various research communities with 
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different research trajectories—and hence different tools and constructs—can emerge and coexist (Scherer 

1998), increasing the plurality in the field at the expense of paradigmatic consensus (Pfeffer 1995; van 

Maanen 1995). The lack of paradigmatic consensus may in turn increase the cost of training research staff 

and further solidify the hands-on research model in these areas. In contrast, the adoption of the funded 

research model and the resulting requirement for collaboration among larger groups of (potentially less-

experienced) research staff create pressure to adopt a well-defined common language across research 

subcommunities. In short, even the more fundamental features of knowledge domain could be 

endogenously changing with the choice of research mode. 

Managerial and Policy Implications 

Our focus in this paper is on U.S. academic research, but our results may be informative more broadly. For 

example, to the extent that research teams in industry are incentivized to maximize their research output 

and have the autonomy to assemble their teams, the results may apply to them as well. Research suggests 

that scientists in industry do indeed care about their contribution to open science (Stern 2004). Hence, 

ceteris paribus, scientists in funded domains in industry would also benefit from forming larger research 

staffs and investing in securing more money to support their teams (either internally or through state or 

federal grants). The reinforcing loops regulating funded research may then become relevant for competitive 

dynamics in research-heavy industries. However, while leading scientists in firms usually have a say in 

hiring their research staff, the decision might also be influenced by other organizational factors beyond 

scientists’ control. Moreover, scientists in industry may also pursue other objectives, such as cost 

minimization, that would influence the composition of their teams and their time allocation decision.  

Beyond the workings of research teams inside firms, governments and private organizations are 

very much interested in shaping the pace and direction of scientific research. They often do so through 

changing the distribution and supply of research funding across various knowledge domains. Our model 

provides insight into the effectiveness of funding as a strategic lever. Whereas the dominant narrative 

suggests a simple linear relationship between funding and research output (Furman et al. 2012), our findings 
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suggest a more nuanced and nonlinear relationship. At low levels of funding supply (which significantly 

raise the costs of securing funding) or in fields in which the hands-on research model dominates, the demand 

rather than the supply would be the binding constraint on funding use. Thus, increases in funding may have 

limited impact on the direction and production of scientific output. Therefore, if national basic research 

programs and private funding grants are to have a notable impact on academic scientific production, they 

need to be large and to focus on fields with potential to adopt the funded model. More particularly, in areas 

where the hands-on research model dominates, the distribution of funding may prove inadequate to regulate 

the research direction and outputs. In the absence of a clear strategic lever to influence research in these 

fields, the basic contract underlying external funding of research—where funding agencies set the direction 

and fund the research and academic scientists work on those priorities—starts to break down. Policy makers 

and managers of organizations may see a need for research in those domains (because there are many 

unanswered questions that can benefit from basic research) while also finding the output of existing research 

wanting. Indeed, over the past decades, several attempts have been made to increase federal support for 

social science research, yet the total share for social sciences in federal research funds declined from 4.3% 

in 1970 to 1.9% in 2014 (National Science Foundation 2015a). The challenge to hands-on research increases 

further when we consider that teaching loads are a function of a university’s business model. In the absence 

of research funding, declining state and federal spending on higher education (Hovey 1999) may be putting 

disproportionate pressure on social sciences and humanities, leading many administrators to squeeze out 

research time by increasing teaching loads in order to balance university budgets (Summers 2005).  

Our findings also address another puzzle regarding the supply and demand of funding. Despite the 

more than 30-fold growth in the supply of funding in the United States over the last 60 years, demand has 

grown even more quickly. Whereas in the 1950s, the acceptance rate of typical National Institutes of Health 

(NIH) and National Science Foundation proposals was over 50%, it is now below 20% (Stephan 2013). 

These conflicting trends have fueled a policy debate on the merits of additional public research funding. At 

the heart of this puzzling imbalance is a reinforcing feedback whereby each scientist, using research 

funding, trains more than one other scientist, leading to an even larger pool of scientists who eventually 
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demand more funding, and the cycle continues. Our model sheds light on the strength of this reinforcing 

loop, which has been called the basic reproduction number of academia (R0: “the mean number of 

new PhD’s that a typical tenure-track faculty member will graduate during his or her academic career”) 

(Larson et al. 2014, p. 246). Where the funded model dominates, each scientist trains many PhD students, 

increasing future demand for research funding several-fold if those trainees decide to pursue basic research. 

In fact, increasing the availability of funding counterintuitively leads to an increase in R0 (because more 

students and postdocs can be accommodated by each scientist), so that demand will grow even more 

quickly. R0s in hands-on fields are smaller and are not influenced by funding availability. Given the 

significantly different R0s across fields (Larson et al. 2014), a balanced portfolio of basic research funding 

will skew over time toward favoring the fields with the highest R0. Those fields endogenously generate 

increasing demand, getting a higher share of the overall funding, and thus calling for even more funding. 

Even if those demands for additional funding are granted, those fields continue to see a reduced funding 

rate, as supply-generated demand always remains ahead of supply. The distribution of funding across fields 

in the United States may show some of this crowding-out effect; the share of the NIH budget for life 

sciences research has increased significantly over the past 50 years (National Science Foundation 2015a; 

Stephan 2013). Overall, supply for funding would be quickly matched and exceeded by demand in funded 

fields, whereas in hands-on fields, demand for funding may take much longer to catch up to an increase in 

supply. Therefore, metrics of the balance of supply and demand, such as funding rate, are noisy and 

imprecise in assessing the actual societal return on marginal additional supply of funding. Yet, in the 

absence of better measures of the economic value of scientific output, easily measured metrics, such as 

funding rate, may hold sway in policy debates.  

Our model also addresses the potential mismatch in the skills of scientists hired into academic 

positions. The funded model calls for scientists who spend most of their time seeking funding, promoting 

their research, and managing their groups. These activities call for managerial and public relations skills as 

much as for scientific research aptitude. However, at the time of appointment into a faculty position, little 

is known about whether the candidate has those skills; decisions are largely based on research skills. Some 
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candidates who secure a tenure-track position in a funded field may find it more satisfying to act as research 

staff, while others with the skills best fitted to managing a research group may never get to lead one. 

Academic departments conducting funded research may find it valuable to more systematically consider 

managerial skills when hiring faculty. 

Finally, our results have important implications for the scientific labor market. An important—yet 

underexplored—output of the scientific enterprise is the training of the scientific workforce. Where the 

funded model dominates, PhD students are the workhorses of producing science, and the capacity to train 

them scales directly with the funding supply for basic research. This creates a policy dilemma when an 

increase in basic research is called for based on its societal returns but there is already an oversupply of 

PhDs. The returns on basic science would justify increased funding, yet such increases would exacerbate 

the oversupply of PhDs. One might expect an excess of PhDs to be balanced by reduced demand for 

applying to PhD programs in funded research areas in response to low or negative returns to pursuing a 

PhD. However, this balancing mechanism is dampened and delayed because a significant part of demand 

for PhD programs in top research universities can come from foreign applicants with limited knowledge 

of—and sensitivity to—labor markets in the host country. For example, more than half of all PhD graduates 

of U.S. engineering programs are foreigners (National Science Foundation 2015b). As a pro-immigration 

policy, subsidizing PhD programs may prove very effective for attracting skilled immigrants to countries 

with strong basic research programs that could use the funded model. On the other hand, the supply of 

scientific workforce in fields dominated by hands-on research would be less sensitive to funding policy. 

Overall, we expect that the viability of policy levers and their impact on scientific research and scientific 

workforce output are highly contingent on where the research domain stands on the funded–hands-on 

continuum. A more nuanced understanding of the organization of science is thus important for the design 

and implementation of effective science policy.  
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Limitations and Future Research 

Our analysis focused only on a subset of relevant mechanisms. Future research can extend this work in 

multiple directions to shed light on the full richness of a phenomenon as complex as the organization of 

scientific work across heterogeneous scientists, institutions, communities of practice, and countries. First, 

from the joy of discovery to mentoring the next generation of scientists and making a difference, many 

factors beyond publications motivate scientists. Other incentives may also play a role in acquiring funding 

(e.g., to buy out courses or signal competence), working in a team (e.g., social interaction), or doing 

administrative work (e.g., income or status); where those factors are more prominent, the mechanisms we 

model have weaker explanatory value. Second, our analysis was limited to U.S. research universities. 

Understanding variations across other research settings in the United States, as well as significant cross-

country heterogeneity, may require very different models. Third, in focusing on the incentives of a single 

scientist, our analysis excludes many relevant mechanisms spanning social norms and historical precedents, 

institutional and legal determinants, and administrative policies in each university, to name a few. Future 

research is needed to elaborate on these determinants and how they determine heterogeneity in the 

organization of science. Fourth, given that scientists following funded versus hands-on models have 

different day-to-day tasks (e.g., raising funds vs. doing research) and different publication prospects, over 

time potential scientists may pick their field of study to align their tasks with their interests. Those sorting 

mechanisms offer interesting extensions in light of limited supply for different skills. Fifth, a deeper 

treatment of the field, institution, and individual effects driving the key model parameters will be very 

informative. For example, such multilevel analysis can shed light on heterogeneity within the same field 

and the same institution. Finally, the relevant parameters that regulate the research model are not known to 

new scientists and are dynamically changing because of endogenous mechanisms (some of which we briefly 

discussed) and others (e.g., the increasing burden of knowledge (Jones 2009)). How scientists learn about 

those parameters and how much scientists account for the dynamics of key parameters in their choice of 

research model are important questions for future research.  
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Figure 1. The Correlations Between Funding, Hours Spent on Advising/Counseling Students, and Publications 
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Table 1. Faculty Statistics at Virginia Tech 

Department1 

Research Staff 

per Scientist2 

External 

Funding per 

Scientist3 

Publications 

per Scientist4 

# of 

Scientists5 Area6 

Mechanical Engineering 2.82 258,573 4.00 66 

E
n

g
in

e
er

in
g
 

Civil & Environmental Engineering 2.66 158,815 2.17 64 

Computer Science  4.61 216,526 2.63 41 

Industrial and Systems Engineering 2.52 91,045 1.71 31 

Aerospace and Ocean Engineering  2.69 169,169 1.21 29 

Biological Systems Engineering 1.40 67,686 1.84 25 

Engineering Science & Mechanics 3.21 112,824 1.04 24 

Materials Science & Engineering  4.27 120,831 2.95 22 

Biomedical Engineering  7.38 102,744 4.90 21 

Mining and Minerals Engineering  0.41 160,765 0.24 17 

Chemical Engineering  3.00 138,967 3.60 15 

Electrical & Computer Engineering 2.71 132,035 2.63 103 

Average (Weighted by the number of faculty) 3.04 156,045 2.55  

Biomedical Science  1.68 69,153 1.83 41 

L
if

e 
S

c
ie

n
c
es

 

Biological Sciences 1.55 84,654 3.96 55 

Human Nutrition, Foods & Exercise 1.41 183,294 1.15 39 

Crop & Soil Environmental Science 1.06 100,769 1.06 35 

Biochemistry 1.18 124,007 1.97 31 

Animal and Poultry Sciences 1.15 106,423 2.63 27 

Entomology  1.26 142,183 1.50 26 

Plant Pathology, Phys, & Weed Sci. 1.49 138,703 1.75 24 

Horticulture 1.30 91,600 1.19 16 

Food Science and Technology 1.38 81,794 1.08 13 

Average (Weighted by the number of faculty) 1.37 112,178 2.02  

Chemistry  3.51 137,274 3.44 41 

P
h

y
si

c
a
l 

S
c
ie

n
c
e
s 

Mathematics  0.87 15,607 1.73 40 

Physics  2.20 89,130 3.43 40 

Geosciences  1.59 101,797 2.97 34 

Statistics  3.05 27,607 2.63 19 

Average (Weighted by the number of faculty) 2.18 79,330 2.86  

Public & International Affairs  1.47 10,019 0.80 30 

S
o

c
ia

l 
S

ci
e
n

ce
s Sociology 1.22 2,797 0.81 27 

Psychology  2.92 56,407 1.88 26 

Agricultural & Applied Economics 2.03 44,058 0.83 23 

Political Science 0.63 0 0.37 19 

Economics  0.94 2,056 1.25 12 

Hospitality and Tourism  1.10 9,156 1.90 10 

Average (Weighted by the number of faculty) 1.59 20,219 1.05  

School of Education 0.87 9,702 2.40 47 

H
u

m
a

n
it

ie
s English 0.50 932 0.14 36 

Foreign Languages and Literatures 0.00 4,552 0.12 26 

Human Development  2.38 34,791 0.96 24 

History 0.45 3,103 0.14 22 

Communication 0.00 1,818 0.45 11 

Average (Weighted by the number of faculty) 0.76 9,224 0.92  

Accounting & Information Systems  0.82 7,245 0.09 22 

M
a

n
a
g

em
e
n

t 

Business Information Technology  0.05 0 0.63 19 

Finance, Insurance & Business Law  0.59 588 0.18 17 

Management  0.38 0 0.56 16 

Marketing  0.80 950 1.20 10 

Average (Weighted by the number of faculty) 0.51 2,130 0.45  
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Notes: 1) Only traditional departments that actively publish research findings are included. 2) This number includes 

PhD students as well as senior research staff (postdocs and research associates typically employed by senior scientists) 

in each department. For interdisciplinary PhD programs, the number of students is distributed across departments 

proportional to the faculty from those departments active in the interdisciplinary center. 3) Average funding per faculty 

member for the 2011–2013 period. 4) Publications from 2013 with author address terms including “Blacksburg” and 

“Virginia Tech” (and other spelling variations such as “Virginia Polytech Inst”) listed in Web of Science are matched 

using author address information against departments in Virginia Tech. A satisfactory match is found for more than 

95% of 3,154 identified publications. 5) Includes both tenured/tenure-track and ranked research faculty based on 

Virginia Tech’s human resource data. 6) Area labels are assigned to be roughly consistent with the Higher Education 

Research Institute Faculty Survey used in the quantitative analysis. 
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Table 2. Summary Statistics by Major Area 

Variables All Areas 

Engineeri

ng 

Life 

Sciences 

Physical 

Sciences Psychology 

Other 

Soc. Sci. Humanities 

Managem

ent 

2yr publications 
5.158 

(7.210) 

6.957 

(8.597) 

6.051 

(7.365) 

6.202 

(8.649) 

5.547 

(6.757) 

5.62 

(6.296) 

4.182 

(4.669) 

3.697 

(4.540) 

Hours per week advising and/or 

counseling students 

4.172 

(3.678) 

4.987 

(3.773) 

4.382 

(3.918) 

4.228 

(3.538) 

4.342 

(3.616) 

4.157 

(3.389) 

4.056 

(3.189) 

3.749 

(3.238) 

Received external or internal funding 
0.680 

(0.466) 

0.813 

(0.390) 

0.901 

(0.299) 

0.719 

(0.449) 

0.718 

(0.45) 

0.701 

(0.458) 

0.569 

(0.495) 

0.567 

(0.495) 

Hours per week spent on research & 

scholarly writing 

11.617 

(11.210) 

13.163 

(10.560) 

17.196 

(14.006) 

14.374 

(12.154) 

14.261 

(11.702) 

13.774 

(12.266) 

10.830 

(9.785) 

11.587 

(10.519) 

Hours per week spent on committee 

work & meeting 

4.400 

(4.011) 

4.438 

(3.703) 

4.294 

(3.806) 

4.076 

(3.575) 

4.059 

(3.538) 

4.545 

(4.124) 

3.983 

(3.583) 

4.440 

(4.141) 

Hours per week spent on other 

administration duties 

4.825 

(7.722) 

4.853 

(7.247) 

4.305 

(6.983) 

4.169 

(6.965) 

4.276 

(6.851) 

5.046 

(7.132) 

4.437 

(7.239) 

4.284 

(7.525) 

Hours per week spent on teaching 

responsibilities 

15.584 

(10.420) 

14.873 

(8.941) 

13.236 

(10.045) 

15.402 

(9.502) 

14.915 

(9.067) 

13.839 

(9.541) 

18.890 

(10.237) 

17.286 

(9.688) 

Gender (male=0, female=1) 
0.297 

(0.457) 

0.105 

(0.306) 

0.227 

(0.419) 

0.158 

(0.365) 

0.26 

(0.438) 

0.401 

(0.49) 

0.345 

(0.476) 

0.225 

(0.418) 

U.S. Citizen (no=0, yes=1) 
0.923 

(0.267) 

0.874 

(0.332) 

0.922 

(0.268) 

0.877 

(0.328) 

0.906 

(0.292) 

0.938 

(0.24) 

0.875 

(0.331) 

0.922 

(0.269) 

Tenured (no=0, yes=1) 
0.705 

(0.456) 

0.730 

(0.444) 

0.746 

(0.435) 

0.772 

(0.420) 

0.742 

(0.438) 

0.67 

(0.47) 

0.717 

(0.450) 

0.668 

(0.471) 

Salary ($K) 
73.189 

(35.656) 

84.283 

(39.473) 

75.613 

(32.921) 

72.266 

(33.340) 

73.058 

(33.67) 

78.27 

(38.672) 

63.631 

(32.108) 

91.801 

(39.075) 

Age1 
5.492 

(2.040) 

5.273 

(2.171) 

5.621 

(1.969) 

5.440 

(2.146) 

5.327 

(2.128) 

5.402 

(2.024) 

5.577 

(2.098) 

5.265 

(2.008) 

Experience (years since last degree) 
19.060 

(10.853) 

19.037 

(11.071) 

16.558 

(10.430) 

21.230 

(11.323) 

19.214 

(10.935) 

18.487 

(10.842) 

18.355 

(10.923) 

16.558 

(10.430) 

Note: Standard deviations are shown in parentheses. The full sample included 128,005 faculty-year data points. 

1) The survey asks participants to mark the age bracket they belong to. There are 10 age brackets: (1) Under 30, (2) 30 to 34, (3) 45 to 39, (4) 40 to 44, (5) 45 to 

49, (6) 50 to 54, (7) 55 to 59, (8) 60 to 64, (9) 65 to 69, and (10) 70+.

 Electronic copy available at: https://ssrn.com/abstract=3084070 



42 

Table 3. The Interaction Between Funding, Advising/Counseling Students, and Research Output 

DV:  Publications in 2 years prior to Survey 

Model: OLS with Robust Standard Errors 

Area: All Areas 

 (1) (2) 

Hours per week advising and/or counseling students 
0.079*** -0.003 

(0.008) (0.009) 

Received funding in 2 years prior to survey 
1.326*** 0.779*** 

(0.056) (0.083) 

Received funding in 2 years prior to survey × Hours per 

week advising and/or counseling students 

 
0.129*** 

 
(0.014) 

Hours per week spent on research and scholarly writing 
0.102*** 0.102*** 

(0.003) (0.003) 

Hours per week spent on committee work and meetings 
0.010 0.009 

(0.007) (0.007) 

Hours per week spent on other administration duties 
-0.034*** -0.034*** 

(0.003) (0.003) 

Hours per week spent on teaching responsibilities 
-0.026*** -0.026*** 

(0.003) (0.003) 

Gender (male=0, female=1) 
-0.303*** -0.310*** 

(0.056) (0.056) 

U.S. Citizen (no=0, yes=1) 
-0.738*** -0.737*** 

(0.109) (0.109) 

Tenured (no=0, yes=1) 
1.343*** 1.332*** 

(0.070) (0.070) 

Salary ($K) 
0.028*** 0.028*** 

(0.002) (0.002) 

Age 
-0.368*** -0.365*** 

(0.022) (0.022) 

Experience (years since last degree) 
0.018*** 0.018*** 

(0.005) (0.005) 

   

Survey year dummies Yes Yes 

Institution dummies Yes Yes 

Field dummies Yes Yes 

Constant 
2.144*** 2.488*** 

(0.225) (0.229) 

 
  

Observations 76,491 76,491 

R-squared 0.126 0.127 

Note: All estimates are from ordinary least squares (OLS) models. Robust standard errors are shown in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1  
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Table 4. The Interaction Between Funding, Advising/Counseling Students, and Research Output 

Across Major Areas 

DV:  Publications in 2 years prior to Survey 

Model: OLS with Robust Standard Errors 

Area: Eng. Life Sci. 
Physical 

Sciences 
Psychology 

Other Soc. 

Sci. 
Humanities Management 

 (1) (2) (3) (4) (5) (6) (7) 

Hrs./week advising 

students 

-0.041 

(0.043) 

-0.050 

(0.050) 

0.079** 

(0.039) 

0.023 

(0.034) 

0.003 

(0.049) 

0.015 

(0.018) 

-0.008 

(0.042) 

Received funding in 2 

years prior to survey 

0.479 

(0.407) 

1.131** 

(0.477) 

1.750*** 

(0.313) 

1.660*** 

(0.317) 

0.869* 

(0.459) 

1.287*** 

(0.193) 

1.050*** 

(0.214) 

Funding × Hrs./week 

advising students 

0.298*** 

(0.064) 

0.155*** 

(0.056) 

0.180*** 

(0.056) 

0.156*** 

(0.058) 

0.098 

(0.076) 

0.007 

(0.036) 

0.043 

(0.050) 

Hrs./week spent on 

research and scholarly 

writing 

0.118*** 

(0.015) 

0.081*** 

(0.011) 

0.125*** 

(0.011) 

0.078*** 

(0.011) 

0.095*** 

(0.014) 

0.094*** 

(0.009) 

0.076*** 

(0.011) 

Hrs./week spent on 

committee & meetings 

-0.024 

(0.034) 

0.009 

(0.038) 

0.051 

(0.035) 

0.008 

(0.033) 

0.022 

(0.036) 

0.013 

(0.018) 

0.017 

(0.018) 

Hrs./week spent on other 

admin duties 

-0.035* 

(0.018) 

-0.047*** 

(0.018) 

-0.041** 

(0.016) 

-0.006 

(0.019) 

-0.032* 

(0.018) 

-0.034*** 

(0.008) 

-0.018* 

(0.010) 

Hrs./week spent on 

teaching responsibilities 

-0.054*** 

(0.013) 

-0.019* 

(0.012) 

-0.058*** 

(0.012) 

-0.029** 

(0.013) 

-0.020 

(0.012) 

-0.033*** 

(0.009) 

-0.007 

(0.009) 

Gender (male=0, 

female=1) 

0.768 

(0.471) 

-0.623*** 

(0.213) 

-0.443* 

(0.243) 

-0.047 

(0.247) 

-0.762*** 

(0.225) 

0.007 

(0.124) 

-0.249 

(0.164) 

U.S. Citizen (no=0, 

yes=1) 

-2.233*** 

(0.455) 

-0.851** 

(0.395) 

-0.541* 

(0.317) 

-1.587*** 

(0.592) 

-0.581 

(0.510) 

-0.460** 

(0.196) 

-0.136 

(0.316) 

Tenured (no=0, yes=1) 
2.377*** 

(0.330) 

1.702*** 

(0.293) 

1.263*** 

(0.273) 

1.835*** 

(0.328) 

1.621*** 

(0.323) 

0.584*** 

(0.188) 

0.461** 

(0.235) 

Salary ($K) 
0.031*** 

(0.010) 

0.072*** 

(0.017) 

0.053*** 

(0.015) 

0.019** 

(0.009) 

0.027*** 

(0.008) 

0.028*** 

(0.007) 

0.006** 

(0.003) 

Age 
-0.512*** 

(0.108) 

-0.179 

(0.135) 

-0.561*** 

(0.105) 

-0.560*** 

(0.101) 

-0.224** 

(0.101) 

-0.249*** 

(0.054) 

-0.074 

(0.058) 

Experience (years since 

last degree) 

0.017 

(0.024) 

-0.039 

(0.050) 

0.056** 

(0.024) 

0.070*** 

(0.025) 

-0.009 

(0.022) 

0.019 

(0.013) 

0.024* 

(0.014) 

Survey year dummies Yes Yes Yes Yes Yes Yes Yes 

Institution dummies Yes Yes Yes Yes Yes Yes Yes 

Constant 
3.189*** 

(1.211) 

7.867*** 

(1.488) 

0.338  

(0.751) 

2.097* 

(1.248) 

2.434** 

(1.204) 

1.942*** 

(0.569) 

1.388 

(0.951) 

Observations 4,923 5,859 7,648 3,836 2,327 5,780 5,984 

R-squared 0.172 0.154 0.181 0.177 0.237 0.165 0.150 

Note: All estimates are from ordinary least squares (OLS) models. Robust standard errors are shown in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 

 Electronic copy available at: https://ssrn.com/abstract=3084070 



44 

Table 5. The Impact of Unexpected Absence of Research Staff on Faculty Productivity 

DV:  Citation-weighted publication 

Model: Panel OLS Panel Poisson 

Sample: 
Funded 

model 

Hands-on 

model 

Full 

sample 

Funded 

model 

Hands-on 

model 
Full sample 

 (1) (2) (3) (4) (5) (6) 

Unexpected absence of 

research staff 

-290.302*** 

(97.291) 

25.196 

(24.686) 
 -0.808** 

(0.338) 

0.638 

(1.195) 
 

Unexpected absence of 

research staff × Hands-on 

model 

  
-14.719 

(119.426) 
  

0.406 

(0.940) 

Unexpected absence of 

research staff × Funded 

model 

  

-

253.57*** 

(69.954) 

  
-0.800** 

(0.335) 

Nonlinear experience 

controls 
Yes Yes Yes Yes Yes Yes 

Individual and year fixed 

effects 
Yes Yes Yes Yes Yes Yes 

Observations 1,244 508 1,752 1,242 501 1,743 

Number of faculty 54 17 71 53 16 59 

R-squared (within) 0.248 0.103 0.181    

Log-likelihood    -111958.87 
-

111715.51 
-128034.75 

Notes: Note: All estimates are from panel ordinary least squares (OLS) models with individual and year fixed 

effects. Robust standard errors are shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Table 6. Change in the Standard Deviations of Research Output Across Scientists in the Six Main 

Areas Plus Psychology from the First Two Surveys (Aggregated) to the Last Two  

 

Standard deviation of 

research output for 

1989 and 1992 surveys 

(aggregated) 

Standard deviation of 

research output for 

2007 and 2010 surveys 

(aggregated) 

Percent change 

in standard 

deviations 

Engineering 7.355 9.639 31% 

Life sciences 6.019 7.650 27% 

Physical Sciences 7.907 8.472 7% 

Psychology 5.220 6.708 28% 

Social sciences (exc. psychology) 6.183 5.479 -11% 

Humanities 4.768 4.392 -8% 

Management 4.957 4.132 -17% 
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A-Heterogeneity in outcomes across branches of science 

Figures in table 1 are compiled from the National Science Foundation various data sources for 

2014 and 2015. They show significant variation across funding, PhD graduates, and articles per 

faculty (as much as 960%, 240%, and 480% respectively), even after aggregating the data over 

very different institutions and large branches of science. Table 1 in the main paper shows that 

variations would be more pronounced if we consider more narrowly defined fields in a single 

institution, such as electrical engineering and biology rather than engineering and life sciences. 

Also included in this table is the fraction of research funds going to equipment, which is rather 

limited, suggesting that equipment costs cannot explain the broader variations in outcomes. 

Table S1- Heterogeneity in the outcomes of U.S. scientists 

RESEARCH UNIVERSITIES IN THE 

U.S.A. 

FUNDING PER 

FACULTY 

(THOUSANDS 

OF $ PER YEAR) 

PHD 

GRADUATES 

PER FACULTY 

PER YEAR 

ARTICLES 

PER 

FACULTY 

PER YEAR 

EQUIPMENT FUNDS 

(FRACTION OF 

TOTAL RESEARCH 

COSTS) 

PHYSICAL SCIENCES 1,082 0.51 3.78 0.05 

MATHEMATICAL SCIENCES 129 0.35 0.79 0.01 

COMPUTER SCIENCE 780 0.74 0.86 0.04 

LIFE SCIENCES 1,239 0.45 2.92 0.03 

PSYCHOLOGY 135 0.45 1.07 0.02 

SOCIAL SCIENCES 155 0.35 0.83 0.01 

ENGINEERING 992 0.83 1.12 0.05 
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B-Analytical solutions 

The model notations are summarized below: 

Parameters (assumed constant): 

pr : The productivity of staff relative to scientist in contributing to labor component of research 

at : The fraction of faculty time spent on training and advising one staff member 

ft : The fraction of faculty time spent on bringing the funding needed to sustain one staff member 

et : The fraction of faculty time spent on bringing the funding needed to sustain one unit of equipment 

se : The productivity of scientist in contributing to labor component of publication production 

Decisions and Outcomes: 

P: Number of funded research staff 

E: Equipment 

Tr: Scientist’s Research Execution Time  

O: Research Output 

Tf: Scientist time on raising funds  

Ta: Scientist time advising and managing the team  

OF: Research fraction labored by funding 

 

1-Baseline model 

To solve the first optimization model (equation 3), the Karush-Kuhn-Tucker conditions are used: 

Defining: PETEtPtPtTEPreTe reafrpsrs 321

1 )1()(     

The following equations will hold at the local extremums for the original problem: 

;0;0;0 














PETr

       (4) 

01 eafr EtPtPtT        (5) 

;0;0;0 321  PETr         (6) 
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This system of seven equations and seven unknowns can be solved by using the first three 

equations to find 
321 ,,   in terms of other unknowns, and then solving the remaining four 

equations to find Tr, P, and E. This procedure provides two possible answer sets that maximize 

the original objective function depending on the parameter settings in the model. These results 

are summarized in Table 2. 

 

Table S2 – Metrics for the extent of relationship between a research group and external clients. 

 

Hands-on research Model 

If 
fap ttr   

 

Funded Research Model 

If fap ttr   

 

0 )/( fa tt   
Number of funded PhD Students 

(P) 

et/)1(   Equipment (E) 

  0 
Scientist’s Research Execution 

Time (Tr) 

 
  1)

1
()(

e

s
t

e  
   1)

1
()(

e

ps
t

Pre  Research Output (O) 

1  )/(1 faa ttt   Scientist time on raising funds (Tf) 

0 )/( faa ttt   
Scientist time advising and 

managing the team (Ta) 

0 1 
Research fraction labored by 

funding (OF) 

 

 

 

2- Heterogeneous research tasks 

In the main analysis we focused on a single type of research task. Here we extend the analysis by 

separating research design and research implementation into two different tasks, where the 

former can only be done by the scientist. We can explicitly capture research design time (TD) as a 

variable the scientist can change, and consider its impact on the research output by moderating 

the scientist’s time allocation problem to: 

  1

,,,
)(: ETPreTeMaximize Dpsrs

TEPT Dr

     (8) 
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Subject to: 

1 eDafr EtTPtPtT  

0 ≤ 𝑃, 𝐸, 𝑇𝑟 , 𝑇𝐷 

Solving this problem, using a similar method, leads to very similar results, where a fixed fraction 

of scientist’s time (TD=β) will be allocated to research design, and the optimum equipment level 

is E=1-α-β. This solution is consistent with our original assumption, so we used the simpler 

model in the text.  

3- Institutional support and internal funding 

Finally, the possibility of using internal funding, fellowships and teaching assistantships to fund 

research staff can be included. The resulting system of equations is thus modified to: 

  1

,,,
)))1(((: EtGPreTeMaximize gpsrs

GEPTr

     (9) 

Subject to: 

1 eaafr EtGtPtPtT  

gG   

GTEP r ,,,0   

Here G is the number of scholarship/assistantship positions used by the group. The parameter tg 

represents the fraction of internally funded staff time that needs to be spent on commitments 

other than the scientist’s research (e.g. teaching). Similar to the previous problems, the 

Lagrangian for this problem is formed and Karush-Kuhn-Tucker conditions applied, leading to 

the following feasible solutions: 

 

Conditions Equipment (E) Scientist’s 

Research 

Execution Time 

(Tr) 

Number of PhD 

Students Funded 

by Research 

Money (P) 

Number of PhD 

Students Funded 

by Scholarships 

and 

Assistantships 

(G) 

fap ttr  & 

)1/( gap ttr   
et/)1(     0 0 

fap ttr  & 

)1/( gap ttr  & 

agt1  

))1((
.

)1(
gpr

e

tgrT
t






  
))1(

)1(
1.( gpa tgrgt 









 
0 g 

fap ttr  & 

)1/( gap ttr  & 
et/)1(   0 0 at/  
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agt1  

fap ttr  & 

)1/( gap ttr   et/)1(   0 
fa tt 


 0 

fap ttr  & 

)1/( gap ttr   
)))(1((

.

)1(
afg

e

tttgP
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


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0 )(

)1)()(1()1(
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tt

tttggt



 
 

g 

 

 

C-Simulating evolving practices in a community of scientists 

To explore the relationship between the analytical model’s predictions and the evolutionary 

dynamics of a behaviorally more realistic community of simulated scientists, we developed an 

agent-based model with the following features: 

- One hundred scientists are modeled to be interacting over 1000 periods with each other, 

occasionally changing their research organization. 

- Scientists are subject to the same production function as described in the basic model and 

are all exposed to the same underlying parameters (in the base-case: te=0.1, es=2, α=0.8; 

ta=0.1, tf=0.1; rp is changed in reported scenarios). 

- Scientists’ research organization decisions include P (number of staff), E (number of 

equipment), and Tr (fraction of time spent on research). Below we call an instance of 

these three decisions as an ‘organization’.  

- Scientists are unaware of underlying parameters that shape their production function; 

they also do not follow any formal optimization process. However, they change their 

organizational decisions following these rules: 

o Every period, if a change was made in the previous period and the publication 

output declined, the scientist would revert back to the previous organization.  

o Each period with a probability that scales with Omax-O (O is the current output of 

the scientist and Omax the current maximum in the community), the scientist 

attempts a change in her organization. 

o If her current output is above community average, this change will be a random 

walk in the vicinity of the current organization. If her current output is below 

community average, she will switch to following the community norm on the 

three decisions shaping the organization. 

o Community norm is defined as the average on each decision across all members 

of the community. 

- Simulations start with each scientist adopting a random set of decisions intendent of 

others in the community. 

This simulation model is implemented in Vensim ™ and available as part of the online appendix, 

providing full documentation on remaining parameter values and implementation details. 
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Interested readers can open the model using the free Vensim model reader and both explore 

model formulations and conduct simulations with different parameter settings. 

The purpose of this simulation model is limited to illustrating the basic insight that the simple 

analytical model we introduce in the paper can be informative about the trajectory of more 

complex evolutionary dynamics in a scientific community. Thus full analysis of this simulation 

model and exploring various alternative formulations is beyond the scope of the current paper. 

Here we report two simulation runs for how the community norms on the three decisions 

comprising the organization of scientific work evolve over time. The simulation runs show the 

optimal solutions for P, Tr, and E (from the analytical model) along with the evolving norms for 

each. The graph on the right shows the case with rp=0.l, leading to dominance of the hands-on 

model. The graph on the left simulates the community with rp=0.5, i.e. a setting where funded 

model dominates.  

  

 
Figure S1- Evolving norms for equipment levels (E), number of staff (P) and research time (Tr) 

in a community of 100 scientists. Left: a setting where funded model dominate. Right: a setting 

where hands-on model dominates.  

In both cases The community norm over time converges towards the optimal solution, even 

though none of the simulated scientists are explicitly maximizing their publications. The 

convergence is very fast initially, but slows down as random exploration offers few improvement 

opportunities when most scientists are close to the optimal organization, and incentives for 

changing the organization decline as laggards catch up to the more productive members of the 

community.  
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D-Funding and student advising interaction graphs 

The eight graphs below further depict the relationship between time spent 

advising/counseling students and predicted research output in the presence and absence of funding 

across all areas and within each area separately. The graphs for engineering, life sciences, sciences, 

and psychology show a clear increase in research output as funded faculty spend more time 

advising/counseling students. Few research productivity benefits accrue, however, from allocating 

time to advising/counseling students in the absence of funding in these areas. In comparison, in 

social sciences (excluding psychology), humanities, and management, spending more time with 

students has little effect on research output regardless of whether faculty received funding over the 

2 years prior to each survey.  

Figure S2-  The interaction between funding, advising/counseling students, and research output 

across major areas (bars on graphs indicate 95% confidence intervals) 
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E-Survey questions 

 

The survey below was distributed to all faculty at the Massachusetts Institute of Technology and 

Virginia Tech. If a scientist wanted to report more than one incident, the questions on block 2 were 

repeated for each incident. 

 

BLOCK 1 

Your First Name ____________ 

Your Last Name ____________ 

On the following page please share instances in the past 20 years (1996-2016) when one 

or more of your direct advisees (a Ph.D. student, post-doc, or lab technician who was working 

under your supervision) went on leave/departed for an extended period of time (more than 2 

months), or joined the team significantly later than expected, due to unforeseeable events (e.g. visa 

delays, family commitments, health problems). 

How many instances would you like to report (please limit to the most notable 3 instances) 

 

BLOCK 2 

Consider the instance when one of your advisees/research staff was absent unexpectedly 

and answer these questions based on that instance. 

 

In what year this instance started? 
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▼ 1996 ... 2016 

Starting Month (mark the closest month you remember) 

▼ January ... December, Can't Remember 

How long did this absence last? 

o 2-4 Months  

o 5-8 Months  

o 9-12 Months  

o More than 12 Months  

o Can't Remember  

 

Advisee type  

o early stage PhD student  

o late stage PhD student  

o post-doc associate  

o technician or lab staff  

o Other ________________________________________________ 

 

Advisee gender  

o Male  

o Female  
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Advisee primary source of funding at the time  

o Research funding I supplied  

o Teaching assistantship  

o Fellowships or other funding  

o No Funding/ Self-funded  

o Can't Remember  

 

What is your subjective evaluation of the quality, research wise, of that advisee compared to her/his 

peers?  

o Below average  

o Typical  

o Above average  

 

Reason for absence 

o Visa or immigration issues  

o Health  

o Family  

o Other/Unknown  

 

Do you think the underlying reason for absence impacted your advisee’s performance before their 

absence? 

o No  

o Probably not  

o Maybe  

o Yes  
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How many active PhD students, post-docs, and other research staff did you advise and manage at the 

time? 

o Fewer than 3  

o 3-5  

o 6-10  

o More than 10  

 

Approximately how much research funding did you have at the time on an annual basis? 

o Under $20,000  

o $20k-50k  

o $50k-100k  

o $100-200k  

o $200-500k  

o More than $500k  

 

What was your rank at the time? 

o Assistant Professor  

o Associate Professor  

o Full Professor  

o Other  
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Your institution at the time of this instance? 

o MIT  

o Virginia Tech  

o Other  
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